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1 Introduction

“The 19th century was a century of empires. The 20th century was a century of
nation states. The 21st century will be a century of cities.”

–

Wellington Web, former Mayor of Denver
(Gassmann, Böhm, & Palmié, 2018, p. 1)

The United Nations (2018) estimates that the percentage of the population
living in cities will increase from 55.3 % in 2018 to 68.4 % in 2050 while at the
same time, the entire population could increase by another 2.5 billion. Even
though that in Europe the population will slightly decrease until 2050, urban
areas are also further proliferating with 83.7 % of the population living in cities
in 2050.

Those numbers are challenges for the cities as they need to provide their
inhabitants with a stable economy, well–functioning mobility and transportation,
good governance, sound quality of living, a sustainable environment as well as
enabling research & development (R&D), and enhancing people’s minds and
abilities (Caragliu, Del Bo, & Nijkamp, 2011, p. 65; Lazaroiu & Roscia, 2012,
pp. 327–328). Experts from different backgrounds such as large corporations,
consultancies, governmental institutions, and researchers try to tackle these
complex issues with various approaches and focuses (see for the variety of
publications and their origins, for example, Alawadhi et al. (2012), Bosch et al.
(2017), IW Consult (2017), J. H. Lee, Hancock, and Hu (2014), and Roland
Berger (2017)). Consequently, there is a demand for comprehensive frameworks
to assess the cities’ current states. Such a framework enables more precise
evaluations of their needs as well as the set–up of development plans.

In light of the numerous challenges for cities, the term smart city evolved
in a way of understanding which goes beyond a pure focus on technology
(Bifulco, Tregua, Amitrano, & D’Auria, 2016, pp. 133–134; Nam & Pardo,
2011, p. 288) and it has become increasingly prevalent in public debate, and
academics (Ahvenniemi, Huovila, Pinto–Seppä, & Airaksinen, 2017, p. 235;
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Dameri & Cocchia, 2013, p. 4). The popularity of the smart city notion also
causes a multitude of definitions (Albino, Berardi, & Dangelico, 2015, p. 4;
Grossi & Pianezzi, 2017, p. 79) and sundry criticisms (see Hollands (2008),
and Grossi and Pianezzi (2017)), while the field is interdisciplinary and still
mostly unexplored (Angelidou, 2014, p. 3). Definitions and borders between
disciplines are fuzzy. However, there is some consensus that the smart city
concept is inherently holistic (Castelnovo, Misuraca, & Savoldelli, 2016, p. 727;
Meijer & Bolívar, 2016, p. 397; Monzon, 2015, p. 19). Ahvenniemi et al. (2017,
p. 241) show that some aspects as environmental issues are underrepresented
in smart city frameworks. Furthermore, cities often fail to introduce smart
strategies in their long–term development plan (Angelidou, 2016, p. 27).

Therefore, the main focus of this thesis aims to introduce a convenient concep-
tion of a smart city framework which helps to analyze the state of 65 cities in
Europe according to their smartness. This framework persists in the develop-
ment of an objective and a subjective Smart City Composite Indicator (SCCI)
which offer a detailed view on those 65 cities. It is holistic and differentiates at
the same time between several aspects to enable close observations of the cities’
performances. The approach here is unique in the sense that it distinguishes
between objective elements that surround the cities and subjective perceptions
of the citizens. Other researchers mix them and rely mostly on the former
(see Subsection 2.2). The separate contemplations yield interesting insights
because they are benchmarks that allow to examine if inhabitants perceive cities
as smart which are smart according to objective criteria. Furthermore, this
thesis attempts to identify smart city drivers with the means of an econometric
analysis. The idea is to establish the same econometric models for both SCCIs
and therefore to investigate if the same variables explain them. Moreover, the
econometric models can set a rough agenda for the long–term development of
the cities.

The remainder of this thesis is structured as follows. First, a literature review
(see Section 2) takes a brief look at composite indicators and discusses their
use and implementation generally. After that, seven composite indicators
from the literature are examined. Those composite indicators are relevant to
the construction of the SCCIs because they consider similar issues and give
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methodological guidance as they face similar challenges. The literature review
closes with a presentation of five contributions that use regression models to
have a look at drivers of different urban subject matters. They set the basis
for the econometric analysis which is employed to identify the drivers of the
cities’ smartness.

Section 3 introduces an empirical strategy for the construction of the SCCIs.
There are many challenges to a convenient development of the SCCIs. At first,
the term smart city needs to be defined. The definition includes four dimensions
to portray a detailed view of the city performances according to several aspects.
Thereafter, the rationale behind the selection of the 65 European cities is
presented, and criteria for appropriate indicators are depicted. The next thing
to do is the calculation of the SCCIs, and there are various points to think
about in the calculation process. Amongst those are handling of missing data,
treatment of outliers, normalization of indicator values, weighting of indicators
and dimensions, and aggregation to comprehensive composite indicators. Lastly,
uncertainty analysis and sensitivity analysis are done to show that the SCCIs
are principally robust to model choices.

The results of the SCCIs are discussed in Section 4. It illustrates the conjunc-
tions within and between the SCCIs, meaning that emphasis is put on aspects
which go along within each of the two SCCIs and that the commonalities
between both of them are contemplated. Moreover, a descriptive comparison
of the SCCIs concentrates on distinctions with respect to population size and
between capital and non–capital cities. The descriptive comparison indicates if
a city performs better objectively or subjectively according to those aspects.

Section 5 proposes econometric models for the identification of smart city
drivers. Thereby, the same models are applied to the objective SCCI and
the subjective SCCI, respectively, as dependent variables. After theoretical
considerations, the models are specified in line with similar contributions to
the literature. Then the models are applied, and the results are presented. The
subsection closes with a discussion of the results.

Finally, the thesis ends with a conclusion (see Section 6). It summarizes the
main results, points on limitations, and shows avenues for future research.
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2 Literature Review

This literature review first takes a closer look at composite indicators in
general, mainly concerning their advantages and disadvantages. Thereafter, it
contemplates the results of other composite indicators which are in some way
or another relevant to the development process of the Smart City Composite
Indicators (SCCIs). Lastly, insights from the literature are drawn to build later
a regression model which then enables to analyze the SCCIs more closely.

2.1 A General Look on Composite Indicators

Aggregations of underlying performance indicators into a single index are called
composite indicators (Jacobs & Goddard, 2007, p. 103). They are useful and
widespread tools for policy analysis to compare performances in diverse fields
such as environment, economics, society or technology (OECD, 2008, p. 11).1

Despite their prevalence, composite indicators are controversial (Cherchye,
Moesen, Rogge, & van Puyenbroeck, 2007, p. 111). Therefore, this subsection
discusses their main advantages and disadvantages.

The idea behind composite indicators is that they are more complex and
informative than a number of single indicators (Hagedoorn & Cloodt, 2003,
p. 1366). Furthermore, they can assess progress over time and are easier to
interpret than many single indicators (OECD, 2008, p. 11), and they can build
effective narratives as well as improve public communication (Paruolo, Saisana,
& Saltelli, 2013, p. 630; Saltelli, 2007, pp. 72–73).

However, there are several drawbacks which constitute the controversy about
composite indicators. Their construction is not straightforward, and a common
allegation is that one goal of composite indicators is to gain advocacy for
certain narratives due to their subjective nature (Saltelli, 2007, pp. 66–69).
Uncertainty is another inherent feature because the knowledge about the
underlying structure of the composite indicator is unverifiable and insufficiently
precise (Cherchye, Moesen, et al., 2007, p. 135). Furthermore, there is a lack

1See Bandura (2008) for a compilation of 178 composite indicators on a country level.
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of consensus for theoretical frameworks (Cherchye, Knox Lovell, Moesen, &
van Puyenbroeck, 2007, p. 749).

Accordingly, it is necessary to understand and bear in mind potential risks in
the construction of composite indicators and in their translation into rankings
(Jacobs & Goddard, 2007, p. 109). In the end, the acceptance of a composite
indicator is dependent on peer acceptance and negotiation (Saltelli, 2007, p. 70).

2.2 Composite Indicators Relevant to the SCCIs

Most composite indicators focus on comparing country performances in a
specific field (OECD, 2008, p. 11). However, composite indicators can similarly
be applied to investigate the performances of regions or cities. This subsection
considers the main results of seven composite indicators in the literature which
use at least a notion similar to holistic smart city approaches and which can
give guidance to the construction of the SCCIs due to their methodological
remarks. The main aspects considering the methodological approaches of these
studies are discussed in Section 3.

A significant contribution comes from Giffinger et al. (2007). They set a focus
on medium–sized European cities (between 100,000 to 500,000 inhabitants)
since the accumulated population of medium–sized European cities exceeds
the accumulated population of large European cities (more than 500,000 in-
habitants). This fact underlines their importance. On top of that, challenges
for medium–sized cities differ compared to those for large cities. Giffinger
et al. (2007) aim to identify perspectives for development, to potentially give
strategic advice and to enable benchmarking, lesson–drawing as well as policy
transfer via a smart city ranking. However, they also stress possible handicaps
of these kinds of rankings which include a threat for long–term development
strategies, neglection of complex interrelation in regional development and
that poorly ranked cities could simply ignore the results. Their ranking is
done with the help of a composite indicator and contains 70 medium–sized
European cities. They find that cities from the Benelux, Scandinavia, and
Austria are in the top group. Cities in the new EU–member states are at the

5



bottom. However, they differentiate in their study between six characteristics2

and the results can differ substantially in respect to these characteristics. The
characteristics allow obtaining a better idea of the cities’ strengths and weak-
nesses. For example Luxembourg as the first ranked city in total is solely 25th

in the characteristic ’Smart Environment’. Furthermore, Giffinger et al. (2007)
divide the six characteristics into 31 factors which are based on 74 mostly
objective indicators so that close insights in respect to the performance in those
six characteristics can be obtained. For future research, they point on the
usefulness of time–series analysis. Therefore, they continue to provide rankings
of medium–sized European cities in 2013 and 2014. Furthermore, they also
establish a ranking for large European cities in 2015.3

Montalto, Jorge Tacao Moura, Langedijk, and Saisana (2018a) do not con-
centrate on smart cities. What they do is to monitor the performance of 168
cities in 30 European countries for culture and creativity. Similarly to Giffinger
et al. (2007), they assign 29 mostly objective indicators to nine dimensions and
three major facets.4 They also provide a well–working online version of their
monitor which enables to adapt weights or to simulate the impact of policy
actions. With their work, they aim to support policymakers and other actors
on a city–level, to emphasize the importance of culture and creativity in respect
to resilience and socio–economic perspectives, to benchmark and to inspire new
research questions. Montalto et al. (2018a) divide their sample of 168 cities
in four groups according to their size. Paris, Copenhagen, Edinburgh, and
Eindhoven are at the top of these four groups. Exceptional is that Paris ranks
at least second within the three major facets whereas other well–performing
cities are not necessarily on top in each major facet. Montalto et al. (2018a)
also find that the cultural and creative performance of a city is not determined
by population size, but that capitals tend to perform better. When compared
to other European cities with at least 50,000 inhabitants, cultural and creative
cities have more jobs, younger people, more foreigners, and more human capital.
Cities which are culturally and creatively leading are also economically and

2Smart Economy, Smart People, Smart Governance, Smart Mobility, Smart Environment,
and Smart Living

3The rankings are available at http://www.smart-cities.eu.
4Cultural Vibrancy, Creative Economy, and Enabling Environment
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socially more prosperous which is perhaps mutually reinforced. Lastly, they
state that it is critical for the development of low–income cities to be cultural
and creative because they otherwise may face a ’low–income trap’.

Another contribution on the city level is from Stanković, Džunić, Džunić, and
Marinković (2017). They rank 23 cities from Central and Eastern Europe
according to inhabitants subjective perceptions of the cities’ smart performance.
Twenty–six indicators in five categories5 rely on the European Urban Audit
survey from 2015 (see European Commission (2016b)) to investigate subjectively
perceived smart performances. Furthermore, they link the smart performances
to the perceived quality of life in those 23 cities. The quality of life is measured
by two indicators. In respect to the weights, they determine the category
’Employment and Finance’ by far as most important. Stanković et al. (2017)
find that there is solely a weak correlation between the ranks of their smart
performance model and the ranks according to the perceived quality of life.
Only a few cities rank high (e.g., Vilnius) or low (e.g., Miskolc) in both rankings.

Annoni, Dijkstra, and Gargano (2017) contemplate competitiveness of 263
European regions and use 74 mostly objective indicators which are assigned
to three dimensions6 and cover the period from 2012 to 2014. Their Regional
Competitive Index (RCI) 2016 follows two previous studies on regional compet-
itiveness from 2010 and 2013 (see Annoni and Dijkstra (2013), and Annoni and
Kozovska (2010)). This enables to compare European regional development
over time. Furthermore, Annoni et al. (2017) aim to provide a range of regional
information which then helps regions to compare themselves with their peers
and to plan long–term development. They ascertain that metropolitan and
capital regions perform well in many parts of Europe. Solely in Germany, Italy,
and the Netherlands are other regions more competitive than the capital region.
Moreover, there is a strong positive correlation between the RCI and GDP
per capita as well as a moderate positive correlation between the RCI and net
migration. Annoni et al. (2017) provide scorecards which point on strengths
and weaknesses of a region relative to the 15 regions with the most similar

5Infrastructure, Livability and Housing Conditions, Environment, Employment and
Finance, and Governance, Urban Safety, and Trust and Social Cohesion

6Basic, Efficiency, and Innovation

7



GDP per capita. A comparison of the three RCI editions over time shows that
the regional scores are quite stable. Notable is that in Germany, the RCI scores
improved from 2010 to 2013, in France they improved from 2013 to 2016, and
in Italy, they deteriorated between 2010 and 2016.

Aiginger and Firgo (2015) introduce a concept of regional competitiveness
which takes into account performances of firms and regions as well as ’Beyond
GDP’ goals.7 According to 54 mostly objective indicators which are assigned
to different outcome and input dimensions,8 they report results of outcome
competitiveness under new perspectives for 229 European regions and try to
identify its drivers. Aiginger and Firgo (2015) use data from 2005 as well as
from 2011 to show regional developments over time and to identify the new
perspectives outcome competitiveness drivers. Their analysis shows that the
top regions are in Western and Northern Europe while Southern and Eastern
European regions are at the bottom. Despite the neglection of ecological
aspects in other studies, their final ranking goes along with similar works such
as the RCI 2013. An econometric analysis points on a catching–up process for
regions with a low score in 2005. Capabilities and within them ’Innovation &
Education’ and ’Regional Institutions’ are strong new perspectives outcome
competitiveness drivers.

Athanasoglou and Dijkstra (2014) measure regional progress in 268 European
regions via five indicators, and towards key objectives from Europe 2020.9

Their regional composite indicator is computed concerning the performance
in individual country targets.10 Generally, more prosperous countries have
more ambitious targets than poorer countries. When a common target is
used, poorer countries unsurprisingly do worse and richer countries do better.

7The ’Beyond GDP’ initiative complements GDP with a broader set of indicators which
reflect sustainability and well–being in society across social, economic, and environmental
dimensions (Stiglitz, Fitoussi, & Durand, 2018, p. 13).

8Outcome: Income, Social, and Eco; Input: Cost Competitiveness, Economic Structure,
and Capabilities (Innovation & Education, Social System, Ecology, Regional Institutions,
and Infrastructure & Amenities)

9Europe 2020 is a ten–year growth strategy by the European Commission for smart,
sustainable, and inclusive growth (see European Commission (2010)).

10Employment, Research and Development, Education, and Fighting Poverty and Social
Exclusion
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Capital regions frequently outperform non–capital regions within countries and
also in comparison to the EU–28 average aggregate score while Brussels is a
remarkable exception. There is also a considerable heterogeneity in the scores
within a country which emphasizes the importance of disaggregating data from
a national to a lower level.

The study by Dutta et al. (2018) is on a country level, but also part of this
literature review due to its extensive influence and far–reaching knowledge pool
of the persons involved. Dutta et al. (2018) call their composite indicator Global
Innovation Index (GII). The GII was done every year since 2008 in a similar
fashion. In the GII, Dutta et al. (2018) assess the innovative performance of
126 countries with the help of 80 indicators to promote the importance of inno-
vations. Fifty–seven indicators are objective, 18 are composite indicators from
international agencies with a narrow focus, and five indicators are subjective.
Solely a few main findings are presented because they are not that relevant for
this work here. Those findings include that energy innovations are essential
factors for global growth as well as for avoidance of an environmental crisis,
and that imbalances in innovation preserve which hamper economic and human
development.

In summary, the scope and principal results of seven contributions relevant
to the construction of the SCCIs are part of this subsection in the literature
review. Those are relevant to the construction of the SCCIs in the sense that
they can give guidance for the construction process due to a variety of different
approaches and in the sense that they use at least a notion which is similar
to smart city concepts, such as competitiveness or innovation. Some studies
are quite close to this work in respect to the contemplation of European cities
and the smart cities approach (see Giffinger et al. (2007)) while others provide
ideas to the construction of the subjective SCCI (see Stanković et al. (2017))
or captivate by their expertise (see Dutta et al. (2018)). Table 1 summarizes
key attributes of the seven studies under review in this subsection.
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Table 1: Key Attributes of the Studies in Subsection 2.2

Authors Focus Level Observations Indicators

Giffinger et al.
(2007) Smartness City 70 74

Montalto et al.
(2018a)

Culture &
Creativity City 168 29

Stankovic et al.
(2017) Smartness City 23 26

Annoni et al.
(2017) Competitiveness Regional 263 74

Aiginger & Firgo
(2015) Competitiveness Regional 229 54

Athanasoglou &
Dijkstra (2014) Europe 2020 Regional 268 5

Dutta et al.
(2018) Innovation Country 126 80

2.3 Regression Models Relevant to the SCCIs

One more goal of this thesis is to investigate which aspects drive the objective
and subjective SCCI. This can plausibly be done with the help of regression
models. Therefore, the results of five studies are discussed in this subsection.
Those studies implement regression models to explain issues on a city level.
Necessary for the inclusion of the contributions is that they are relevant in the
sense that insights from their models and their use of independent variables
can be drawn.

It is evident first to recall the seven contributions in Subsection 2.2 and to see
if they also use regression models to explain the outcome of their composite
indicators. However, solely Aiginger and Firgo (2015) do so. The basic idea
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of their regression model is that the elements of their composite indicator at
a previous point in time explain the outcome of their composite indicator at
a later point in time. Such a set–up is not applicable for the SCCIs because
they are measured at a single point in time. On the other hand, some authors
in this subsection calculate composite indicators which they then employ as
a dependent variable in their regression model. But in all these cases their
composite indicators are not helpful to fulfill the needs of the SCCIs, or they
solely describe the construction of their composite indicators superficially which
makes it inappropriate to include them in Subsection 2.2, and Section 3.

Convenient orientation for the SCCIs regression models offer Neirotti, de Marco,
Cagliano, Mangano, and Scorrano (2014). They contemplate 70 cities from all
around the world and analyze, if, and how, emerging smart city models differ
from the smart city concepts which are developed by stakeholders with expertise
such as city planners, technology visionaries, and scientists. For that purpose,
they develop a Coverage Index (CI) which represents the number of application
domains in which cities have introduced projects. They divide the CI into six
categories,11 and with the help of explanatory factor analysis they assign these
six categories to a hard domain and a soft domain.12 Neirotti et al. (2014) use
the CI, the hard domain, the soft domain, and the six categories as dependent
variables. Independent variables in their model are regional dummies, GDP per
capita, GDP growth, CO2, internet diffusion, transparency, R&D expenditure,
population, and population density. On these dependent and independent
variables, they run a multiple linear regression. Overall they find that cities
which invest in hard domains are less likely to invest in soft domains, and vice
versa. This fact works as evidence that there exists no predominant smart
city model, but that there are at least two approaches around. Considering
the higher mean in explanatory factor analysis for the hard domain, a further
interpretation is that cities’ smart strategies primarily focus on technology, and
not on people. Furthermore, population density has a significant positive effect
on the CI. They conclude that there is still no common smart cities definition

11Natural Resources and Energy, Transport and Mobility, Buildings, Living, Government,
and Economy and People

12Hard Domain: Natural Resources and Energy, Transport and Mobility, and Buildings;
Soft Domain: Living, Government, and Economy and People
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and that the evolution of a smart city depends mainly on local contextual
factors.

Caragliu and Del Bo (2015) have a look at smart specialization strategies
and their connection to the smart cities notion in the EU. Regions are smart
specializing if they show an above average capability of specialization in in-
dustries where they have a positive competitive advantage growth. By this
definition, Caragliu and Del Bo (2015) first compute the change in regional
smart specialization with respect to sectoral data in value added and labor force.
Their results suggest that innovation and science are essential for competitive
advantages in the long–run. Second and more relevant to this work, they
construct an urban smartness indicator for 309 cities within the EU.13 They
try to find out if the regional smart specialization as an independent variable
can explain the smartness indicator. To do so, they employ three models. An
Ordinary Least Squares (OLS) regression with robust standard errors when the
smartness indicator is a continuous variable and ordered logit as well as probit
models when the smartness indicator is displayed as a categorical variable. As
control variables, Caragliu and Del Bo (2015) use GDP per capita, regional
dummies for urbanization as well as for new members of the EU, the ratio of
R&D and GDP, and an indicator for interpersonal trust. Thereafter, they run
models with the same model specifications despite that they now assign higher
weights to high–tech industries. Altogether they point out that the relationship
between regional smart specialization and urban smartness is significant. The
basic OLS regression shows that an increase of one unit in the indicator for
smart specialization leads to an increase of 0.3 units in the indicator for urban
smartness. Counterintuitively, the results of the basic OLS regression also
suggest that smart cities are more prevalent in rural areas and new member
states of the EU. Caragliu and Del Bo (2015) argue that rural areas are possibly
not negatively affected by congestion externalities and that new member states
of the EU catch–up. The models which emphasize high–tech industries indicate
that regional specialization in innovative sectors does not necessarily drive the
emergence of smart cities.

13Human Capital, Social Capital, Transport Infrastructure, ICT Infrastructure, Natural
Resources, and E–Government

12



Another contribution comes from Oueslati, Alvanides, and Garrod (2015). They
investigate the phenomenon of urban sprawl in 282 European cities and at
three points in time (1990, 2000, and 2006). Urban sprawl describes that urban
areas take a higher proportion of the land area which is available. Oueslati et al.
(2015) analyze developments in respect to urban sprawl with the help of two
indices which they use as dependent variables. The indices describe changes in
artificial areas and the spatial patterns of residential development. They try
to explain these two indices as dependent variables with population and GDP
per capita while as control variables they implement the agricultural added
value to the area of agricultural land, highway density, the number of rainy
days per year, the average temperature of the years’ warmest moth, the annual
average concentration of NO2, the altitude of the median city center above sea
level, recorded crimes, number of cinema seats and dummies with regard to
European sub–regions. Moreover, they choose random and fixed–effects models
to take into account the panel characteristic of their data. Their results suggest
that increases in income per capita and population growth are linked to the
expansion of urban areas, but that the picture for urban fragmentation is less
unambiguous.

Węziak–Białowolska (2016) provides an econometric model to investigate the
quality of life in 79 European cities. Her model primarily relies on subjective
data. The subjective data are from the European Urban Audit survey in
2015 (see European Commission (2016b)). She employs a questionnaire of the
European Urban Audit survey in 2015 to measure the satisfaction to live in a
specific city as a dependent variable and other questionnaires which capture
more precise elements of the city life as well as aspects like unemployment and
GDP as explanatory variables. Furthermore, she implements control variables
on the citizen and the city level. Those control variables partly have an objective
nature. Amongst others, she includes the age group, gender, the population
size of the city, and a dummy to distinct Southern European regions from other
parts of Europe. Węziak–Białowolska (2016) codes the dependent variable as
dichotomous, and therefore she uses a logistic model. Her findings suggest that
satisfaction with life in a city varies across European cities and also within
them. Furthermore, safety is the essential aspect which contributes to the
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satisfaction of living in a city.

The article from Senlier, Yildiz, and Aktaş (2009) investigates the quality of life
in Kocaeli and compares it with ten European cities that have a similar size.14

They conduct 300 surveys in Kocaeli with questions generally in line with
those from a European Urban Audit survey.15 Senlier et al. (2009) use factor
analysis to assign questions which cover specific issues of the life in Kocaeli to
superordinate areas. Those superordinate areas are social and cultural facilities,
educational facilities, quality of environment, sufficiency of health services,
safety, quality of health services, public transport, neighborhood relations, and
overall satisfaction. They constitute the independent variables. The dependent
variable is a question concerning the quality of life. Senlier et al. (2009) apply
an OLS regression. In accordance with Węziak–Białowolska (2016), Senlier
et al. (2009) find that safety is the most crucial aspect for the quality of life
in Kocaeli. A descriptive comparison with other European cities which are
part of the European Urban Audit survey emphasizes that cities with economic
strength also have a high quality of life.

To conclude, the essential features of econometric models and the main results
of five contributions relevant to the establishment of a regression model for
the SCCIs are part of this subsection in the literature review. The needs of
both SCCIs are taken into account because the review includes contributions
which rely on objective and on subjective data. This part of the literature
review is especially helpful in the sense that it gives guidance for the selection
of independent variables. Table 2 summarizes key attributes of the five studies
under review in this subsection.

14Without clearly stating, Senlier et al. (2009) are probably referring to population size.
15The Urban Audit survey which Senlier et al. (2009) refer to is untraceable.
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Table 2: Key Attributes of the Studies in Subsection 2.3

Authors Focus Level Observations Independent
Variables

Neirotti et al.
(2014) Smartness City 70 12

Caragliu &
Del Bo (2015) Smartness City 309 7

Oueslati et al.
(2015) Urban Sprawl City 282 15

Weziak-Białowolska
(2016) Quality of Life City 41,645 Citizens

83 Cities 34

Senlier et al.
(2009) Quality of Life City 300 8
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3 Empirical Strategy for the Smart City Com-
posite Indicators

“All models are wrong; some models are useful.”

–

Box, Hunter, and Hunter (2005, p. 440)

The construction of a composite indicator involves several steps and decisions
which are based on the personal opinion of the researcher (Saltelli, 2007, pp. 69–
70). There are guidelines and handbooks available for the identification of
the best–suited steps which point on various aspects to discuss and think
about before constructing composite indicators (see European Commission
(2016a), Nardo, Saisana, Saltelli, and Tarantola (2005), and OECD (2008)). In
accordance with these guidelines, this section provides a nine–step theoretical
construction framework for the Smart City Composite Indicators (SCCIs).
Application of the theoretical insights and the discussion of interim results are
directly part of every step. The theoretical framework for the objective and
the subjective SCCI is identical to ensure comparability between both.

Within every step, the approaches from other contributions in the literature
are presented, improvements to these are developed and applied on the SCCIs.
To do this, three phases are part of every step:

(1) Literature: Methodological proposals made by the authors in Subsection
2.2 which are relevant for the respective step in the construction process
of the SCCIs.

(2) Theory: Theoretical considerations to fit the needs of the SCCIs.16

(3) Application: Exertion of the developed step in the theoretical framework
and discussion of the interim results.

16Some theoretical considerations which are made in more detail are not directly necessary
for the respective step, but part of the subsequent uncertainty and sensitivity analysis.
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These phases and the steps to construct the SCCIs are not wholly self–contained,
and sometimes interrelated. Nevertheless, they should give some guidance for
better understanding the modeling procedure and modeling choices.

3.1 Definition & Dimensions

Firstly, it is necessary to identify the goal and scope of the SCCIs. The SCCIs
aim to measure the smartness of European cities subjectively and objectively.
As done by as good as any researcher in the development of composite indicators,
discrete and continuous data are implicitly treated equally. Subjective data
are those which pertain to subjective feelings quantified through questions,
and objective data are those which do not pertain to individual perceptions
but comprise tangible aspects (Yuan, Lim, Lan, Yuen, & Low, 1999, p. 8).
Therefore, it is possible that objective data are obtained from survey questions if
the answers do typically not depend on the individual who answers the question
(e.g., indicator B9O measures the average number of rooms per inhabitant).17

1. Literature

Giffinger et al. (2007, p. 11) do concentrate on smart cities and define a
smart city as “a city well performing in a forward–looking way in [...] six
characteristics, built on the ’smart’ combination of endowments and activities
of self–decisive, independent and aware citizens.” The characteristics are:
Smart Economy, Smart People, Smart Governance, Smart Mobility, Smart
Environment, and Smart Living. Furthermore, Stanković et al. (2017, p. 524)
stress five categories (Infrastructure, Livability, Environment, Employment and
Finance, and Governance) to capture smart city performances.

Montalto et al. (2018a, p. 44) contemplate cultural and creative cities and
expect them “to promote a model of harmonious urban development and
wellbeing which is sustainable for both present and future generations.” In
their opinion, the delimitation to a smart city is that a smart city would put
digital and communication technologies at the center while technologies are a

17The answer to those questions can also depend on the individual due to imperfect
information or intentionally false statements. Those issues are not taken into account here.
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complementary for a cultural and creative city (Montalto et al., 2018a, p. 44).
Moreover, they try to identify a city as being cultural and creative with the
help of three sub–indices (Cultural Vibrancy, Creative Economy, and Enabling
Environment) and nine dimensions (Montalto, Jorge Tacao Moura, Langedijk,
& Saisana, 2018b, p. 1).

Other works considered here have a slightly different focus. They emphasize
regional competitiveness in Europe (Aiginger & Firgo, 2015; Annoni et al.,
2017; Athanasoglou & Dijkstra, 2014) as well as global country competitiveness
(Dutta et al., 2018). For example, Annoni et al. (2017, p. 2) define regional
competitiveness as “the ability of a region to offer an attractive and sustainable
environment for firms and residents to live and work.” Even though those
notions on competitiveness are often closely related to smart city definitions,
they have different focal points and thus, are not contemplated in more detail
within this subsection.

2. Theory

There is no universal definition for the term smart city (Neirotti et al., 2014,
p. 35; Stanković et al., 2017, p. 521). Various disciplines and scholars have
controversial debates about the term in general and the aspects that should be
considered when talking about smart cities. However, for the research purpose
here it is most convenient to follow a strand of literature which understands
the smart city notion as an inherently holistic concept (Ahvenniemi et al.,
2017, p. 236). A holistic understanding requires the identification of different
dimensions in which a city needs to perform well so that it is labeled smart. The
International Telecommunication Union (2014) provide a detailed analysis of
116 smart city definitions.18 The definitions come from leading stakeholders in
this area such as researchers, corporations or governmental institutions. They
identify 50 keywords in these 116 definitions and group them logically into key
dimensions.19 (International Telecommunication Union, 2014, pp. 7–12) The
dimensions are:

18More precisely of smart sustainable city definitions.
19They use the term categories instead of dimensions.
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1. ICT/Communication/Intelligence/Information

2. Infrastructure/Services

3. Environment/Sustainability

4. People/Citizens/Society

5. Quality of Life/Lifestyle

6. Governance/Management/Administration

7. Economy/Resources

8. Mobility

A holistic definition of the term smart city ideally takes into account these
eight dimensions because they represent the numerous parts of a smart city
which many experts perceive as important.

3. Application

The dimensions according to the International Telecommunication Union (2014)
are merged here due to data availability. Indicators of the subjective and the
objective SCCI are obliged to provide revealing results for every dimension.
This requirement is solely fulfilled by a substantial number of high–quality
indicators for each dimension and to obtain those is easier to manage with a
smaller number of dimensions. The merged dimensions are:20

A: Infrastructure & Mobility

B: Living & Social Cohesion

C: Economy & Governance

D: Environment & Sustainability

Dimension A emphasizes primarily the capability of a city to move people
and to provide physical structures. Dimension B highlights aspects which are

20The dimension ’1: ICT/Communication/Intelligence/Information’ is not directly included
in any of the merged dimensions. Nevertheless, the dimension is indirectly part of every
merged dimension as an enabler.
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related to the overall living conditions in a particular city and accounts for
aspects as health, education, openness, and equality. Dimension C measures
the success in economic competition and the quality as well as the efficiency
of public services. Dimension D points on the soundness of environmental
conditions within a city.

Consequently, a ’Smart City’ is defined here as a city which performs well in
the four dimensions ’Infrastructure & Mobility’, ’Living & Social Cohesion’,
’Economy & Governance’, and ’Environment & Sustainability’. The way the
term smart city is defined is consistent with similar approaches in the literature
(see Giffinger et al. (2007), Montalto et al. (2018a), and Stanković et al. (2017)).

3.2 Sample

As a next step, the cities contemplated in the SCCIs are selected. This
subsection is closely related to Subsection 3.3. Some aspects could be discussed
in both subsections. Nevertheless, they are split for understandability, but
their interrelatedness should be kept in mind.

1. Literature

Giffinger et al. (2007, p. 13) select 70 medium–sized European cities. They
start with 244 functional urban areas covered by European Urban Audit. They
exclude 150 cities following three criteria. The first criterion is that they require
a population size of 100,000 to 500,000 inhabitants. Second, they ask for at
least one university in the city. Third, they want the catchment area of the
cities to be less than 1,500,000 inhabitants. Furthermore, Giffinger et al. (2007,
p. 13) incorporate the fact that data availability for some cities is low and
reduce their sample size further but do not report any precise requirement.

Stanković et al. (2017) conduct their analysis on 23 Eastern European cities.
Their criteria are twofold. A city needs to be part of the European Urban
Audit survey from 2015 (see European Commission (2016b)) and it has to be
from Central or Eastern Europe (Stanković et al., 2017, pp. 529–530).
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Montalto et al. (2018a, p. 54) select 168 European cities from about 1,000 cities
in Eurostat’s Urban Audit database according to three criteria: 1. Cities which
have been or will be European Capital of Culture (ECC) up to 2019, or which
have been shortlisted to become an ECC up to 2021; 2. UNESCO Creative
Cities; 3. Cities are hosting at least two regular international cultural festivals.
They further exclude 13 of the 168 cities because they demand a minimum of
45 % data coverage at the index level and 33 % for the ’Cultural Vibrancy’ and
’Creative Economy’ sub–indices, or because cities are located outside the EU
(Montalto et al., 2018b, p. 2).

The samples from other works in consideration here employ regions or countries,
and therefore they are not that helpful for the sample selection. However,
worth of mention is that Dutta et al. (2018, p. 370) require the economies to
cover a minimum of 66 % of data points in both of their sub–indices, ’Input’
and ’Output’.

2. Theory

Appropriate databases need to be identified for the sample selection of the
SCCIs. For the subjective SCCI, data can be drawn from a survey which was
conducted in the context of the European Urban Audit in 2015 (European
Commission, 2016b, p. 2). The European Urban Audit survey 2015 was done
on behalf of the Directorate–General for Regional and Urban Policy in 79
European cities to get insights about the opinions of cities’ inhabitants on
various urban issues.21 During the fieldwork 40,798 citizens with different
demographic and social characteristics were interviewed via telephone in the
28 States of the European Union, Iceland, Norway, Switzerland, and Turkey
between 21st of May and 9th of June 2015. The interviews took place in the
respective mother tongues.22 Previous European Urban Audit surveys are from

21Strictly speaking, the European Urban Audit survey 2015 was done in 79 European cities
and four Greater cities. The cities which are additionally considered as Greater cities are
Athens, Lisbon, Manchester, and Paris. However, the Greater cities are directly excluded
from the discussion here.

22A challenge of cross–national research is that language biases (see Harzing et al. (2009))
and cultural biases (see van de Vijver and Tanzer (2004)) are an issue. But there is no
convenient study which provides information for those biases on all or at least almost all of
the diverse regions in the sample.
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2006, 2009, and 2012 (European Commission, 2016b, p. 8).23

The European Urban Audit survey is the most compelling database available for
the subjective SCCI because there exists no other survey which covers a similar
number of cities, questions, and respondents. Using data from other surveys
to increase the sample size is inappropriate because it would lead to massive
inconsistencies. Other surveys implement different methodologies, contemplate
entirely dissimilar samples of cities, and do not provide the quality as the Euro-
pean Urban Audit survey. Additionally, framing effects (see Kahneman (2011))
could be further amplified when data from other surveys are implemented.

Contrary to the subjective SCCI, there are many different datasets available
for the objective SCCI. Those datasets are mainly from the OECD, Eurostat
or other EU institutions.24 But not every dataset is complete. Therefore,
minimum data coverage needs to be set. The determination of an appropriate
threshold for the cities’ data coverage is a trade–off between the quality as well
as the accuracy of the indicators and the number of indicators that are part
of the objective SCCI and thus, to some extent arbitrary. For the objective
SCCI, a stricter threshold than in Montalto et al. (2018a) and Dutta et al.
(2018) is plausible because their threshold is quite low. The requirement for
the objective SCCI is a minimum of 75 % indicator values for each city within
the sample in every dimension and 85 % indicator values for each city across
all dimensions.

3. Application

The first and at the same time the primary requirement for the SCCIs samples
is that a city needs to be part of the European Urban Audit survey. This
requirement limits the sample size to 79 cities.

23Unfortunately, the European Urban Audit survey provides no information about the
criteria whereby the cities were selected. However, the capital city of every country is part of
the survey. Generally speaking, more cities of a country are in the sample when the country
has more citizens, and within a country, regional diversity of the cities in the sample can be
observed.

24Extensive information about the data such as sources, descriptions as well as fur-
ther remarks are available online: https://drive.google.com/drive/folders/1cyG9ZpZm-
3BakRKBRrDlnxOvJVgQuj8t?usp=sharing.
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The second requirement is that each city needs to provide a minimum of 75 %
indicator values in every dimension and 85 % indicator values overall. This
threshold leads to the exclusion of 14 from the 79 cities so that a sample of 65
cities remains (see Table A1).25 Those 65 cities include the capitals from all 28
countries of the EU.

3.3 Indicators

Now the indicators of the SCCIs are discussed more closely. As also stated
above, this subsection is strongly interrelated to Subsection 3.2.

1. Literature

Montalto et al. (2018b, p. 1) select their 29 indicators in respect to the following
five criteria: Coverage, Relevance, Accessibility, Quality, and Timeliness. Dutta
et al. (2018, p. 76) state that expert opinion and statistical analysis are behind
the indicator selection process of their 80 indicators. They also provide a
detailed description of every single indicator (Dutta et al., 2018, pp. 352–365).

Giffinger et al. (2007, pp. 22–23) include 74 indicators from different regional
levels in their analysis. They do not state a minimum data availability threshold
which any indicator has to satisfy, but they have a coverage rate of 87 % for
their 74 indicators (Giffinger et al., 2007, p. 14). Annoni et al. (2017, p. 19) set
a maximum of missing values for each indicator around 10 to 15 %. Stanković
et al. (2017) select 26 indicators for their smartness ranking and two indicators
to measure life satisfaction. All of their indicators are drawn from the European
Urban Audit survey from 2015 (see European Commission (2016b)).

2. Theory

The reasoning which researchers give for selecting their indicators in the con-
struction process of their composite indicators is often sparse even though there

25Ankara, Antalya, Braga, Diyarbakir, Dortmund, Essen, Geneva, Irakleio, Istanbul, Oslo,
Oulu, Piatra Neamt, Reykjavik, and Zurich were excluded after the list of indicators was
finalized.
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are criteria available. The OECD (2008, pp. 46–48) points on six criteria for
selecting indicators:

1. Relevance

2. Accuracy

3. Timeliness

4. Accessibility

5. Interpretability

6. Coherence

Relevance as the first criterion for selecting the indicator says that an indicator
has to be relevant in the context of the composite indicator. Accuracy alludes
to the importance of credible sources and trustworthy data which are not
distorted by interests or unprofessional collecting practices. Timeliness says
that consideration of the indicators’ vintages is necessary. Accessibility focusses
on the replicability and costs for updating the indicator. Interpretability implies
that every indicator is interpretable and has meaning for itself. Coherence
means that the indicators are collected with the same concepts, definitions,
classifications and methodologies over time and across countries.

The indicators of the objective and the subjective SCCI should also correspond
to each other to ensure comparability between both, and it needs to be possible
that they can be assigned meaningfully to the four dimensions ’Infrastruc-
ture & Mobility’, ’Living & Social Cohesion’, ’Economy & Governance’, and
’Environment & Sustainability’. In addition, the SCCIs set a maximum of
missing values within each indicator. If more values are missing, the indicator
is excluded. The maximum of missing values for each indicator is set to a
quite modest level of 30 % for the SCCIs because it enables to include some
interesting indicators. Furthermore, another requirement is data availability for
each city in the sample and that requirement is quite strict (see Subsection 3.2).

Another issue in selecting appropriate indicators is that the availability of those
indicators on a city level is limited. Therefore, indicators are from a regional
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or national level when it can be assumed that they still have meaning on a city
level. This is a standard procedure in the literature (see Giffinger et al. (2007)).
Moreover, sometimes it is difficult to define which data can be assigned to the
city level. There are different typologies for European cities and metropolitan
regions (see Eurostat (2018)). For simplicity, metropolitan and NUTS 3 regions
as mentioned by Eurostat (2018) are assumed to incorporate the city level.
NUTS 2 regions depict the regional level, and NUTS 0 regions constitute the
country level.

3. Application

Tables A2 and A3 display the indicators of the SCCIs.26 They satisfy all six
requirements as outlined above:

1. Relevance means here that the indicators have to fit the smart cities’
definition. Since a smart city is defined herein with respect to its perfor-
mance in the four dimensions ’Infrastructure & Mobility’, ’Living & Social
Cohesion’, ’Economy & Governance’, and ’Environment & Sustainability’,
indicators are meaningful for these dimensions.

2. The indicators are accurate. Indicators for the subjective SCCI are
from the European Urban Audit survey 2015, and the indicators for
the objective SCCI are mostly from the OECD, Eurostat or other EU
institutions, and thus, they are sufficiently accurate.

3. Timeliness is also satisfied. The fieldwork for the subjective SCCI was
done in 2015. Hence, the indicators for the objective SCCI are optimally
also from 2015. Due to limitations in data availability, some indicators
are from other years.27 But they are as close as possible to the year 2015
and no more distant than four years.

4. The replication of the SCCIs is easily possible since every indicator is
downloadable free of charge. Furthermore, an online database is part

26Recall that more information about the indicators such as sources, descriptions as well
as further remarks are available online: https://drive.google.com/drive/folders/1cyG9ZpZm-
3BakRKBRrDlnxOvJVgQuj8t?usp=sharing.

2741 of the 73 indicators for the objective SCCI are from 2015.
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of this work which contains more information about the sources for the
indicators as well as more detailed descriptions which are important for
the accessibility.

5. Every indicator is interpretable and has meaning for itself and is, therefore,
interpretable.

6. The coherence over time is not an issue as the SCCIs do not include
time series. Furthermore, the indicators for the subjective SCCI are from
the same source and use the same methodology across countries. The
indicators for the objective SCCI are mostly from governmental bodies
such as the EU or the OECD.

The maximum missing values for each indicator is 30 % for the SCCIs. There
are no missing values for the subjective SCCI. The coverage rate with this
requirement for the objective SCCI is around 90 % when taking into account
the cities in the sample and thus, better than in Giffinger et al. (2007).

For the subjective SCCI, all 19 indicators are on a city level. For the objective
SCCI, there are 73 indicators.28 30 indicators are on a city level, 35 indicators
are on a regional level, and eight indicators are on a national level.

3.4 Missing Data

Missing data are an essential aspect in the construction of composite indicators
because their treatment can have a severe impact on the final results. It is
impossible to simply neglect missing values. All indicator values (missing
or not) are by definition always part of composite indicators. Despite the
importance of the problem, many researchers use inadequate methods (Baraldi
& Enders, 2010, pp. 5–6). Therefore, a detailed discussion of proper missing
data treatment is expedient. Note that there are no missing values in the
data for the subjective SCCI and thus, this subjection is solely relevant for the
objective SCCI.

28A few of these 73 indicators are also composite indicators.
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1. Literature

Giffinger et al. (2007) insert values from previous years and values from other
regional levels. Besides, they use z–scores to normalize their indicators and
divide them by the number of values added to obtain imputations (Giffinger
et al., 2007, p. 14).29 Similarly to this is the approach by Annoni et al. (2017).
Annoni et al. (2017, p. 15) state that they do not take into account the values
of one of their indicators for some regions due to regional specificities. This
statement underlines that many researchers think it could be possible to ignore
missing values. However, what Giffinger et al. (2007) and Annoni et al. (2017)
do is that they assign a weight of zero to an indicator value which is missing in
a specific region whereas a different weight is assigned to a non–missing value
of the same indicator in another region. Moreover, if missing indicator values of
a particular region are assigned a zero weight, it subsequently implies that the
weights for non–missing values of this region increase.30 The consequences are
sometimes odd. Annoni et al. (2017) provide various data sheets online which
entails the feasibility to reproduce their work. Their pillar ’Higher Education
and Lifelong Learning’ consists of three indicators. For the French region
Guyane, there is solely the indicator ’Early School Leavers’ available. The z–
score for this indicator in Guyane is the worst z–score among all indicators and
regions. Nevertheless, it is used to compute the entire pillar ’Higher Education
and Lifelong Learning’ which is then used to generate ranks after conducting a
min–max normalization. Accordingly, this contributes to the fact that Guyane
is on the last rank in the corresponding dimension ’Efficiency’, and also in
total.

Aiginger and Firgo (2015) do not provide verifiable information due to the
imputation of missing values. All they indicate about this issue is one sentence
in a footnote in their appendix. In the footnote, Aiginger and Firgo (2015,
p. 42) say that they employed a few econometric imputations for some variables.

29It does not become entirely clear, but it is plausible that they do this within each of
their six dimensions.

30An alternative interpretation which would lead to the same results is that mean values
are computed for each region (not for each indicator) in each dimension, and that those
mean values are then imputed for the missing values. This would imply that the weights for
indicator values from the same indicator are always the same among regions.

27



Athanasoglou and Dijkstra (2014) provide more information. In their index,
they calculate regional target values. If the target value is not viable, they
draw on national target values from a previous year and compare them to
target values from other countries in that year to estimate the corresponding
target values for their index (Athanasoglou & Dijkstra, 2014, pp. 22–23). Dutta
et al. (2018, p. 370) impute values from other years with a cut–off year in 2007.
Besides, they do not impute any values which in fact means that they impute
the respective sub–pillar score (Dutta et al., 2018, p. 76). Montalto et al.
(2018a) use the most sophisticated imputation methods of all contributions in
contemplation. Montalto et al. (2018b, pp. 2–3) impute missing values first by
taking the national average if available. Second, they group the cities according
to the triplet population–GDP–employment. Then they estimate and impute
values based on the values of peer cities. Third, they impute the remaining
missing values by using the average of the three nearest neighbors.

2. Theory

Despite the OECD (2008, pp. 55–62) discussing the issue of missing data in its
handbook on composite indicators in detail, other contributions in the literature
do not contemplate it sufficiently. They directly describe the methods which
they use to deal with missing values without investigating the structure of
the data. Sometimes this leads to poorly reasoned procedures. Thus, a more
sophisticated framework to handle missing data is expedient.

Imputations are in a first step obtained by plausible approximations. These
approximations use available data of the year which is closest to the year 2015
or of the regional level which is closest to the city level (Aiginger & Firgo,
2015, p. 42; Athanasoglou & Dijkstra, 2014, p. 22). The method draws its
convenience from the fact that it relies on existing data which intuitively share
a great deal of correspondence with the true data points for the relevant cities
in each indicator.

Since this evident missing data imputation technique is not able to account for
all missing values, proceeding considerations are necessary. The most common
method to deal with missing data is to solely consider the cases with complete
information (Pigott, 2001, p. 354). This procedure is not applicable here
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because it would reduce the number of indicators and particularly the sample
size in an extent which is unjustifiable.31 Nevertheless, minimum requirements
for data availability are set (see Subsections 3.2 and 3.3).

Furthermore, various approaches are applicable to impute indicator values
based on mathematical properties. For the selection of an appropriate impu-
tation method, there exists the distinction between data which are missing
completely at random (MCAR), missing at random (MAR), missing not at
random (MNAR) (Baraldi & Enders, 2010, p. 6) based on the work of Rubin
(1976). Data are MCAR if they are absent in an utterly unsystematic way
which does not relate to other values of the indicator or to values of other
indicators under study.32 Data are MAR if they are absent in a way which
does not relate to other values of the indicator, but which does relate to values
of other indicators.33 Data are MNAR if their missingness is systematic and
depends on the indicator values themselves (Baraldi & Enders, 2010, pp. 7–8).34

The MCAR mechanism can be examined with the help of a test proposed by
Little (1988). This likelihood ratio test statistic assumes multivariate normality
but also works for non–normal data (Li, 2013, p. 797; Little, 1988, p. 1201). Let
xj be the matrix of the indicator values (j=1,2,...,n) with p dimensions, J the
indicators with missing value patterns, µ̂ the maximum likelihood population
mean vector and Σ̃ maximum likelihood covariance matrix (Li, 2013, p. 797).
The formula for the application of the test by Little (1988) is then given by:

d2 =
J∑

j=1
nj(xj − µ̂j)ᵀΣ̃−1

j (xj − µ̂j) ∼ χ2 (1)

31There are some cities which solely contain one missing value among the 75 objective
indicators. However, solely Vienna lacks no data at all.

32If the tendency of individuals to report their income is purely by chance (Sinharay, Stern,
& Russell, 2001, p. 318).

33If the tendency of individuals to report their income is related to other indicators such
as education (Sinharay et al., 2001, p. 318).

34If individuals with a high or a low income tend not to report it (Sinharay et al., 2001,
p. 318).
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If H0 is not rejected for a chosen significance level and with ∑J
j=1 pj − p degrees

of freedom (where pj are the number of observed components in pattern j),
MCAR is assumed:

H0 : d2 ∼ χ2

After investigating the structure of the data closely, the mean imputation as the
most commonly employed imputation method as well as a specified multiple
imputation (MI) method as a sophisticated imputation approach are discussed.

The mean imputation is a simple and commonly used approach for single
imputations (Song & Shepperd, 2007, pp. 269–270). It replaces missing values
of an indicator with the mean of the observed values of this indicator. This
procedure preserves the mean of the indicator, but often the variance and
covariance get severely biased (Huisman, 2009, p. 4). Another property is that
the imputed values have a correlation of zero with values of other indicators
(Baraldi & Enders, 2010, p. 12). Mean imputation also assumes that the
missing values are MCAR which is in reality rarely the case. It solely works fine
when a few values are missing (Saunders et al., 2006, p. 22). Several authors
emphasize that it “is the worst missing data handling method available [and]
in no situation [...] defensible” (Enders, 2010, p. 43). Hence, the imputation of
missing values for the objective SCCI has to rely on a more ambitious method.

Amongst imputation methods, maximum likelihood and MI represent the “state
of the art” (Schafer & Graham, 2002, p. 173). The choice for a convenient
specification of one of these state of the art methods depends on the fulfillment
of multivariate normality. Multivariate normality is examinable with the help
of an omnibus test for multivariate normality proposed by Doornik and Hansen
(1994) as it generally shows good performance (see Farrell, Salibian–Barrera,
and Naczk (2007)). Let Z1 and Z2 be approximate normal variates which are
transformed from the sample skewness and kurtosis (C. Lee, Park, & Jeong,
2016, p. 1403). Then the test statistic is defined as:

DH = Z
′

1Z1 +Z ′

2Z2 (2)
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If H0 is not rejected for a chosen significance level and with 2k degrees of
freedom, multivariate normality is assumed:

H0 : DH ∼ χ2

Without multivariate normality at hand as the results of the test statistics will
show, predictive mean matching (PMM) as an option for MIs is appropriate for
the estimation of imputations. MIs are sets of multiple plausible values for the
missing values (Rubin, 1996, p. 476). PMM “imputes missing values by means
of the nearest–neighbor donor with distance based on the expected values of
the missing variables conditional on the observed covariates” (Vink, Frank,
Pannekoek, & van Buuren, 2014, p. 62). It yields several advantages for the
purpose here. First, PMM performs well for data which are multivariate normal
and for data which are not multivariate normal (Vink et al., 2014, pp. 80–84;
Wulff & Ejlskov, 2017, p. 47). Second, PMM preserves the distributional
pattern of the indicator (Vink et al., 2014, p. 78; Wulff & Ejlskov, 2017, p. 47).
Third, PMM is quite robust against model misspecifications (Morris, White,
& Royston, 2014, p. 4). Fourth, no distributional assumptions are necessary
(Kleinke, 2017, p. 372). Fifth, PMM leads to plausible imputations because
they can not fall outside the range of the observed values (Vink et al., 2014,
p. 78).35

After the data sets are compiled by using PMM, point estimates are inserted
for the missing values according to Rubin’s rule of combination (Carlin, Li,
Greenwood, & Coffey, 2003, p. 3). Let Ûi represent the imputed value for the
ith dataset and m the number of complete dataset estimates. Then the point
estimate imputation for each missing value is:

U = 1
m

m∑
i=1

Ûi (3)

35Multivariate Imputation by Chained Equations is also often used as a practical tool for
multivariate imputations. It also offers the possibility to assume different distributions for
each indicator. However, some attempts in this direction led to inconvenient and illogical
results for a small number of values.
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3. Application

Before proceeding, all indicators in which a lower value implies a better per-
formance are multiplied by –1 to warrant a consistent statistical analysis.
Otherwise, test results and estimation of imputations are distorted due to a
misleading compilation of indicator properties.

The investigation of the data structure yields ambiguous results. For dimensions
A and B, the MCAR assumption is rejected at a standard significance level
of 0.05. For dimensions C and D, the MCAR assumption is not rejected at
a significance level of 0.05 (see Table A4). Since the MCAR assumption is
rejected for two dimensions of the objective SCCI at a significance level of 0.05,
the mean imputation is not an appropriate method.

The results of the multivariate normality test by Doornik and Hansen (1994)
show that multivariate normality does not prevail at a standard significance
level of 0.05 in neither dimension. These results cancel out a great deal of
methods since most dimensions are not assumed to be multivariate normal.
But as outlined within the theoretical considerations, PMM as a way to deal
with MIs is a reasonable alternative for the objective SCCI.

The application of MI is ambiguous about the ideal number of iterations.
However, the imputations for the objective SCCI follow a rule of thumb which
proposes to create 20 data sets (Baraldi & Enders, 2010, p. 15). In every
dimension all of the indicators with complete data are implemented as auxiliary
variables for practical reasons and because researchers recommend to use a
large set of auxiliaries in the context of MIs (Enders, 2010, p. 133).

3.5 Outliers

Outliers are a controversial subject among scholars (e.g., ’The Black Swan:
The Impact of the Highly’ (Taleb, 2007)). There is no consensus in respect to
the if and the how of outlier treatment. However, the treatment of outliers
is plausible for the SCCIs because some values would influence the results in
a profuse way which is most likely inconvenient. Furthermore, sometimes it
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is possible that extreme values occur due to problems within the collection
process. This is why the treatment of outliers is discussed closer. An outlier is
defined here as “a data object that deviates significantly from the rest of the
objects” (Han, Kamber, & Pei, 2012, p. 544).

1. Literature

Montalto et al. (2018b, p. 2) and Dutta et al. (2018, p. 371) follow similar
approaches. They identify the existence of outliers by assessing the values
for the skewness and kurtosis. If values for the skewness and/or the kurtosis
are quite high, they treat outliers because a significant deviation from the
normal distribution is at hand.36 Skewness is informative about symmetry
(Krishnamoorthy, 2006, p. 12) while kurtosis is informative about the tails
(and not as often misspecified about the peak) (Westfall, 2014, pp. 191–192).
But assessing the normality assumption with skewness and kurtosis in small
samples can be inadequate (Hain, 2010, pp. 46–57; A. R. Henderson, 2006,
pp. 115–119; Kim, 2013, pp. 52–53; McNeese, 2016; Razali & Wah, 2011,
p. 32) and is also quite arbitrary as recommendations for rule–of–thumbs
can vary substantially.37 After identifying the indicators with outliers, both
contributions apply winsorization to those indicators. Montalto et al. (2018a)
use the interquartile range (IQR) and assign the next highest values to the
outliers within each indicator. Dutta et al. (2018) employ a natural log formula
within a range given by the minimal and maximal value for the indicator.38

Annoni et al. (2017, p. 19) apply a Box–Cox transformation to adjust for outliers
when necessary.39 The Box–Cox transformation is a power transformation while
the specification of the transformation depends on a chosen parameter (Osborne,

36Montalto et al. (2018a) require the skewness of an indicator to be greater than two
and/or the kurtosis to be greater than 3.5. Dutta et al. (2018) use values of 2.25 for the
skewness and 3.5 for the kurtosis as boundaries.

37Most handbooks recommend ±2 as boundaries for skewness and kurtosis. More conser-
vative suggestions are ±1, and more liberal suggestions are ±3.

38Interestingly and despite the similarities in their approaches, Montalto et al. (2018a) treat
outliers before imputing missing values, and Dutta et al. (2018) do it vice versa. Theoretical
contributions on this issue are rare. However, it seems adequate to use the original data for
imputations and as a next step to treat the outliers.

39They do not state what precisely necessary means. However, it is likely that they also
assess if the data of an indicator can be assumed to be normally distributed as the Box–Cox
transformation accounts for this.
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2010, p. 4). Annoni et al. (2017, p. 24) set those parameters either to 0.3,
0.5 or 0.8. Despite numerous advantages of the Box-Cox transformation such
as meeting the normality assumption (Osborne, 2010, p. 6), there is also a
drawback because power transformations affect the data normalization process
(OECD, 2008, p. 84). Athanasoglou and Dijkstra (2014, pp. 19–20) do not
discuss the treatment of outliers in much detail. However, outliers implicitly
do not play an important role in their framework since there are target values
for each observation which means that regions are assessed against themselves.
This generally diminishes the occurrence of extremely good or bad performances.
Aiginger and Firgo (2015), Giffinger et al. (2007), and Stanković et al. (2017)
do not state that they treat outliers.

2. Theory

There are various methods to assess the prevalence of outliers and each edit of
these outliers has to be done with much caution. As described above, some
authors use skewness and kurtosis to detect the indicators with suspicious values.
Their idea to first evaluate normality is also applied for the SCCIs because
it warrants that not more indicators and values are treated than necessary.
But due to the mentioned weaknesses, a more sophisticated approach to find
these indicators is employed. The approach here follows a recommendation
which suggests using a normality test in conjunction with a visual assessment
(Ghasemi & Zahediasl, 2012, p. 489) because solely relying on formal tests can
be insufficient (Razali & Wah, 2011, p. 32).

The sample for the SCCIs is between small and medium size and they each
contain the same 65 European cities. For a sample size of this magnitude,
the power of the Shapiro–Wilk test to examine the normality assumption is
appropriate (Adefisoye, Golam Kibria B.M., & George, 2016, p. 7; Ahad, Yin,
Othman, & Yaacob, 2011, p. 641; Ghasemi & Zahediasl, 2012, p. 489; Razali &
Wah, 2011, p. 32).

The normality test by Shapiro and Wilk (1965) was originally developed for
sample sizes which are no larger than 50. Meanwhile, it is possible to conduct
the test for up to 2,000 or even 5,000 observations (Razali & Wah, 2011, p. 25).
It is an omnibus test which enables to detect departures from normality either
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due to skewness, kurtosis, or both (Althouse, Ware, & Ferron, 1998, p. 2). Let
x(i) be the ith order statistic, xi the indicator values, and x the mean of these
indicator values. Furthermore, ai contains the expected values of the order
statistics of independent and identically distributed random variables sampled
from the standard normal distribution as well as the covariance matrix of those
order statistics (Razali & Wah, 2011, p. 25).

Then the test statistic is given by:

W = (∑n
i=1 aix(i))2∑n

i=1(xi − x)2 (4)

If H0 is not rejected for a chosen significance level, normality is assumed:

H0 : X ∼ N(µ, σ2)

As a next step, a quantile–quantile (Q–Q) plot as a visualization method is
conducted to show whether there are outliers even though the Shapiro-Wilk
test would indicate otherwise. A Q–Q plot draws the quantiles of the actual
values against those of the expected values for a normal distribution (Wang &
Bushman, 1998, pp. 49–40). For the sake of completeness, values for skewness
and kurtosis as in Dutta et al. (2018) and Montalto et al. (2018a) are also
calculated and compared to the results of the Shapiro–Wilk test.

Now, as the indicators which possibly contain outliers are determined, these
outliers need to be detected. There are a lot of options available, and many
researchers rely on the standard deviation (e.g., outliers are those values which
are more than ±2 standard deviations distant from the mean) (Leys, Ley, Klein,
Bernard, & Licata, 2013, p. 765). This is problematic because the outlying
values have a substantial influence on the standard deviation (Leys et al., 2013,
p. 764), especially in small samples (Cousineau & Chartier, 2010, p. 60). Hence,
a robust measure is preferred to detect outliers. As a robust measure, the IQR
is selected as it is also the case in the work by Montalto et al. (2018a). IQR
has a breakdown point of 25 % (Rousseeuw & Croux, 1993, p. 1273).40 Let Q3

40The median absolute deviation as another robust method has a breakdown point of 50 %.
But 25 % is perfectly enough for the SCCIs.
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be the 75th percentile and Q1 the 25th percentile. Then the IQR is denoted by:

IQR = Q3 −Q1 (5)

A value is perceived as an outlier if it is belowQ1−1.5IQR or aboveQ3+1.5IQR
(Calero, Moraga, & Piattini, 2008, p. 42).

The outliers are then winsorized after the determination non–normality. Win-
sorization converts outlying high (low) values to the next value which is high
(low), but which is not an outlier anymore (Salkind, 2010, pp. 1636–1637). It
implies the intuitive advantage that after winsorization, some values which are
extremely good (bad), are still good (bad) without being so extreme that they
distort the final results.

3. Application

Essential for the interpretation of test statistics is the determination of an
appropriate significance level. Often a significance level of 0.05 is used. Nev-
ertheless, values should only be treated when necessary. The results for the
Shapiro–Wilk test (see Tables A6 and A8) in line with the Q–Q plot and with
values for the skewness and kurtosis yield that a significance level of 0.01 can
be deemed as appropriate. With this significance level, there are no indicators
determined as from a normal distribution which contain too extreme values
so that they would distort the final results. Furthermore, every indicator in
the SCCI which is from a normal distribution according to the Shapiro–Wilk
test is also from a normal distribution according to the skewness and kurtosis
values applied by Montalto et al. (2018b, p. 2) and Dutta et al. (2018, p. 371).
Those skewness and kurtosis requirements would point on more indicators to
be from a normal distribution (see Tables A6,A7,A8, and A9).

The IQR detects 186 outliers for the objective SCCI and eight outliers for the
subjective SCCI in respect to the non–normal indicators. The indicator with
the most outliers is C15O. It contains ten outliers.41 The indicator A1S alone

41The number is that high because the data for the indicator is on the national level. If a
country has too extreme values, it is the same for every city within this country. According
to that, already six cities from the United Kingdom contain outlying values.
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accounts for half of the eight outliers of the subjective SCCI. The city with
the most outliers within the non–normal indicators according to the IQR is by
far Nicosia in the objective SCCI with twelve outliers and Naples as well as
Palermo in the subjective SCCI with two outliers for each of these two cities.

Winsorization is conducted for all these 194 outliers of the subjective and
objective SCCI. An alternative to winsorization are power transformations.
They are possibly more adequate when the normality assumption is an absolute
condition. But as already noted, they affect the (obligatory) normalization
process and although it can be beneficial for the overall analysis to fulfill
the normality assumption for all (or at least many) indicators, it is not a
necessary requirement. Winsorization does also affect the normalization process.
Nevertheless, running some trials with diverse power transformations techniques
and comparing the values normalized by z–scores as introduced in the next
subsection yields that winsorization affects the normalized values less because
its influence on mean and standard deviation is rather small.

3.6 Normalization

Normalization is an obligatory procedure for the objective SCCI because the
indicators are expressed in various units and scales. For the subjective SCCI
this is not the case, and hence normalization is not a necessary requirement.
However, for the sake of consistency and better comparability between both
composite indicators, the subjective SCCI is also normalized.

1. Literature

Giffinger et al. (2007, p. 14) use z–scores. Z–scores divide the distance from an
indicator value to the mean of this indicator by its standard deviation. Annoni
et al. (2017, p. 19) employ weighted z–scores with population sizes as weights.

Another commonly used procedure is the max–min method. Dutta et al. (2018,
p. 371) stretch a range between the maximum and minimum value of the
relevant indicator. The actual indicator value is put in relation to this range
by taking into account the minimum (maximum) value when more (less) is
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better. For index data, they use the range of the index instead of the maximum
and minimum values. The normalized values can range between 0 and 100.
Montalto et al. (2018b, p. 3) pursue a similar approach. Athanasoglou and
Dijkstra (2014, pp. 19–20) calculate distances of actual performance values
to target values. The performance relative to the target can range between
a minimum of zero and a maximum of one. In Aiginger and Firgo (2015,
pp. 16–17) the normalized values have a maximum of one and a minimum of
zero after conducting the max–min method.

2. Theory

Talukder, Hipel, and vanLoon (2017, pp. 5–7) provide a helpful overview of
normalization. They point on five commonly used normalization techniques:

• Ranking

• Distance to Target

• Min–Max

• Proportionate

• Z–score

Ranking normalization assigns a higher rank to a better indicator value. It
leads to the loss of a great deal of information because the distances between
indicator values become unobservable. Distance to target normalization is
not applicable for the SCCI because there are no target values to rely on.
The min–max normalization sets boundaries with the help of maximum and
minimum values for each indicator. It is heavily dependent on those values, and
another disadvantageous property is that it does not eliminate differences in
variance between the indicators (Talukder et al., 2017, p. 7). The proportional
normalization divides an indicator value by the sum of all indicator values.
Despite some advantageous features of this method, it is unsuitable for the
objective SCCI because in the objective SCCI are two indicators (B13O and
B18O) which contain both, positive and negative values. The issue is that
the natural boundary between zero and one would not be at hand for these
indicators. It implies that the negative values which indicate a bad performance
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would be worse when they are transformed compared to indicators with solely
positive or negative values, and vice versa.

Z–score normalization remains as another widely used alternative. Let xi be
an indicator value, x the sample mean of an indicator and σ the standard
deviation of this indicator. Then z–scores are obtained by:

zi = xi − x̄

σ
(6)

Z–scores have a mean of zero and a standard deviation of one. The method yields
that scores from different distributions are directly comparable, it adjusts for
different scales and variances, it maintains relative differences due to the linear
transformation, and it diminishes the influence of extreme values (Talukder
et al., 2017, p. 6). Due to major drawbacks of other methods and the convenient
features of the z–score normalization, it seems most appropriate to rely on
z–scores for the SCCIs.

3. Application

Critical in the application of z–score normalization is to differentiate between
indicators in which a higher value displays a better performance and indicators
in which a lower value displays a better performance. The latter need to be
multiplied by –1 in a step prior (as it is already done in case of the SCCIs)
or directly after z–score normalization so that a better z–score within each
indicator points on a better performance. Furthermore, outliers have to be
treated before normalization. Treating outliers after calculating the z–scores
would distort their mean and standard deviation. Weighted z–scores as in
Annoni et al. (2017, p. 19) are not used because the influence of the population
size or other factors is unclear due to the novelty of this research project.

3.7 Weighting

By far most of the composite indicators employ equal weights for every indicator
(Tate, 2012, p. 330). But apart from its simplicity and replicability, there is
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hardly a good reason why equal weights for every indicator are the best choice.
The situation that every indicator has the same importance is in most cases
rather unlikely. Hence, this subsection discusses a thoughtful weighting scheme
for the SCCIs.

1. Literature

Giffinger et al. (2007, p. 14) state that they aggregate their indicators besides a
small correction due to the coverage rate of an indicator “on all levels without
any weighting.” It is not entirely clear what they mean as it is impossible not
to apply any weights. If they use the same weights for each dimension and the
same weights for each indicator within a particular dimension it implies that
higher weights are assigned to indicators which are in a dimension with a lower
number of indicators. Following this plausible interpretation of their imprecise
methodological description yields partly substantial differences in indicator
weights without a proper reason. Similarly, Athanasoglou and Dijkstra (2014,
p. 23) use equal weights for each of their four objectives. Solely one objective
consists of two indicators instead of one, and within this objective, the indicator
weights are also equal.

Dutta et al. (2018, p. 370) assign weights of either 0.5 or 1.0 to each component
in their composite indicator in a way to ensure that they obtain the highest
correlation between them. Alongside, they use equal weights within each
subdivision of their composite indicator. This again entails that a lower
number of elements in a subdivision leads automatically to higher weights.
Montalto et al. (2018b, p. 3) proceed similarly to obtain local indicator weights.
Apart from that, they consult experts so that they can implement the budget
allocation method to weigh their sub–indices and dimensions. Within the
budget allocation process, experts assign more of a predetermined budget to
elements which importance they want to stress (OECD, 2008, p. 32).

The weighting scheme in Annoni et al. (2017, pp. 16–18) implies that weights
differ between observed regions as it takes into account five different regional
development stages. Less developed regions get a higher weight for the ’Basic’
pillar, and vice versa. More developed region gets a higher weight for the
’Innovation’ pillar, and vice versa. Furthermore, they use weighted z–scores
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with the regions’ population size as weights (Annoni et al., 2017, p. 19).

Aiginger and Firgo (2015, pp. 14–15) apply equal weights for each of their three
pillars and use Principal Component Factor Analysis (PCFA) to determine
indicator weights. PCFA groups indicators and can estimate weights according
to correlations between them (OECD, 2008, p. 89).

Stanković et al. (2017, pp. 526–535) use the Analytic Hierarchy Process (AHP)
from the field of multi–criteria analysis. The AHP offers a framework to
determine weights based on reciprocal pairwise comparisons between different
alternatives (Saaty, 2008b, pp. 1–2). However, Stanković et al. (2017) are
uncritical about the large gap in indicator weights. The highest indicator
weight is more than 17 % while some indicators weigh less than 1 %.

2. Theory

Weights for the indicators of the SCCIs are determinable based on different
methods. Those methods are categorizable by three main groups which are
equal weighting, statistic–based weighting, and public/expert opinion–based
weighting (Gan et al., 2017, p. 493).42 Equal weights are a proper choice when
a statistical or empirical base is absent (OECD, 2008, p. 31). Moreover, they
are simple and straightforward (Gan et al., 2017, p. 495). Let n be the number
of indicators within the dimensions and the number of dimensions, respectively.
Then the ith local weight of an indicator is given by:

ηi = 1
n

(7)

While the ith weight of a dimension is given by:

ψi = 1
n

(8)

However, there are major drawbacks of equal weighting due to its arbitrariness
and non–transparency (Rowley, Peters, Lundie, & Moore, 2012, p. 29). Those

42Equal weights are strictly speaking also a form of opinion–based weighting (Mikulić,
Kožić, & Krešić, 2015, p. 313).
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drawbacks are immense and not justifiable for the SCCIs. Henceforth, a
weighting scheme which combines statistic–based weighting and public/expert
opinion–based weighting is proposed. The weighting scheme uses PCFA to
assign weights to the indicators within each dimension and the AHP to assign
weights to each dimension.

The usage of two widespread data structuring techniques, Principal Component
Analysis (PCA) and Factor Analysis (FA) is sometimes confusing due to their
similarities (Glorfeld, 1995, pp. 377–378).43 Hence, the term PCFA describes
here the conventional approach that PCA is employed to extract principal
components and to consider those as factors for conducting a subsequent factor
analysis (OECD, 2008, pp. 69, 89).

PCFA uses linear transformation techniques to reduce data dimensionality
without losing a significant amount of information (Gan et al., 2017, p. 493).
The idea of PCFA as a weighting procedure is to account for a considerable
variation in the data by a small number of factors and to adjust for overlapping
information (Hermans, van den Bossche, & Wets, 2008, p. 1338).44 Factor
loadings are assigned to each indicator. The indicators with the largest variation
across the observations have the largest factor loadings, and thus, it is vital
that there are no outliers anymore as they would have a considerable influence
on the factor loadings and accordingly on the weights (OECD, 2008, p. 26).
The main advantage of this statistic–based procedure is that it reduces the risk
of double weighting, but on the other hand, the results are possibly illogical
and differ from reality (Gan et al., 2017, p. 495).

An essential condition to conduct PCFA is that the indicators are sufficiently
intercorrelated. A measure to examine an adequate fulfillment of the inter-
correlation is the Kaiser–Meyer–Olkin Measure of Sampling Adequacy (KMO)

43See Johnson and Wichern (2007, pp. 430–538) for a detailed theoretical discussion on
PCA and FA.

44PCFA could also be used to determine the design of the SCCIs dimensions with indicators
assigned to a small number of factors which then represent the dimensions. However, the
assignment of indicators to dimensions relies on discrete decisions as the ratio of observations
to indicators is too low for the objective SCCI (OECD, 2008, p. 66), and indicators with
the highest correlation are not necessarily those which logically represent a dimension of the
SCCIs.

42



(Kaiser, 1970; Kaiser & Rice, 1974). Let rjk be an original correlation and qjk

an anti–image correlation. Then the KMO is denoted by:

KMO =
∑ ∑

k 6=j r
2
jk∑ ∑

k 6=j r
2
jk + ∑ ∑

k 6=j q
2
jk

(9)

The KMO can have a range between zero and one, and a value above 0.5 is
acceptable (Kaiser & Rice, 1974, pp. 112–113).45

If the sample is adequate (i.e., the KMO within a dimension is above 0.5), then
the next step is to determine the number of factors to retain in the PCFA. The
determination of the number of factors to retain follows the suggestion from
the OECD (2008, p. 89). A factor is retained when

i) its eigenvalue is larger than one.

ii) it contributes more than 10 % to the explanation of overall variance.

iii) it contributes to the explanation of the overall variance so that it exceeds
60 %.

The retained factors are then rotated by using varimax rotation as it is common
practice (OECD, 2008, p. 90). The handbook of the OECD (2008, p. 90) next
recommends calculating the weights by grouping the indicators with the highest
factor loadings, squaring and scaling them to unity sum and then multiplying
those values by the proportion of the variance which the factor explains in
respect to the total variance explained by the retained factors.46 This approach
is appropriate when another aim is to construct intermediate composites, and
also, it is adopted in the literature (see Aiginger and Firgo (2015), and Sharpe
and Andrews (2012)). However, as the construction of intermediate composites
is not an aim of the SCCIs, it would neglect some information because it

45The handbook from the OECD (2008, p. 67) refers incorrectly to Kaiser and Rice (1974)
and says that they propose a value of 0.6.

46The description of the OECD (2008, p. 90) is not entirely clear as the treatment of the
indicator ’Tech Exports’ shows. They follow Nicoletti, Scarpetta, and Boylaud (2000) and
state to group the indicators with the highest factor loadings. Either they refer solely to the
non–negative factor loadings or to the squared factor loadings scaled to unity sum. This is
not consistent with Nicoletti et al. (2000, p. 27) as their indicator ’Price controls’ shows.
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ignores a lot of factor loadings. Hence, the SCCIs follow other approaches and
descriptions which take into account all factor loadings of the retained factors
(see Feroze and Chauhan (2010), Raihan (2011), Salvati and Carlucci (2014),
and Sands and Podmore (2000)). Let δj be the proportion of the explained
variance of factor j in respect to all retained factors J , lij the factor loading of
the ith indicator on factor j and Ej the variance explained by the factor j (Gan
et al., 2017, p. 495). Then the local weight for each indicator is calculated by:

ηi = δj

l2ij
Ej

(10)

Weights for the dimensions are obtained next via the Analytic Hierarchy
Process (AHP).47 The fundamentals of the AHP were developed by Saaty
(1977). Instead of judging the relative importance of indicators and dimensions
intuitively, the AHP offers a scientific design in which reciprocal pairwise
comparisons take place (Saaty, 2008b, p. 2). The design requests a problem
definition and a hierarchy structure which considers goals, criteria, sub–criteria,
and alternatives.

The hierarchy structure is vital to conduct the reciprocal pairwise comparisons
in which matrices that contain all the relevant elements and a scale with values
from one to nine are used to point out “how many times more important or
dominant one element is over another element with respect to the criterion or
property with respect to which they are compared” (Saaty, 2008a, p. 85). The
reciprocal automatically enters the matrix on the opposing side of the diagonal.
Table 3 shows the scale of dominance and importance based on Saaty (1990)
in which the intensity of importance is assessed with numbers between one and
nine. One indicates that both elements are equally important and nine points
on the extreme importance of one element over another.

The weights are obtained by standardizing the matrices. These weights can be
checked for consistency. They are consistent when the consistency ratio (CR)

47There are more extensive frameworks to apply the AHP available than it is expedient
to carry out here (see Maletič, Maletič, Lovrenčić, Al–Najjar, and Gomišček (2014), and
Rangone (1996)).
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Table 3: Scale of Dominance and Importance

Intensity of
Importance Definition Explanation

1 Equal importance Two activities contribute equally
to the objective.

3 Moderate importance Experience and judgment slightly
favor one activity over another.

5 Strong importance Experience and judgment strongly
favor one activity over another.

7 Very strong
importance

An activity is favored, and its
dominance demonstrated in practice.

9 Extreme importance Favor of one activity over
another is the highest possible.

2,4,6,8 Intermediate values When compromise is needed.

is less than or equal to 0.1 (Saaty, 1990, p. 13).48

The AHP provides credence and transparency. Nevertheless, an issue is the
identification of proper values for the reciprocal pairwise comparisons. These
values will always remain subjective (Saaty, 2008a, pp. 85, 95–97).49 After the
weights for the indicators within a dimension and the weights of the dimensions
are calculated, the overall indicator weight is computed by simply multiplying
the local indicator weights with the weights of the dimensions. Let ηi be the
weight of the ith indicator within the dimensions and ψi the weight of the ith

dimension. Then the global weight for each indicator is given by:

ωi = ηiψi (11)
48For a detailed discussion on the calculation of the CR, see Alonso and Lamata (2006).
49For more criticism on the AHP, see Department for Communities and Local Government

(2009).
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3. Application

As a first step, the KMO is computed (see Tables A10 and A11). The overall
values for the KMO are above 0.5 in each dimension of the SCCIs, and accord-
ingly, it is adequate to conduct the PCFA. The values for the subjective SCCI
are generally better than for the objective SCCI. They can be improved by
excluding the individual indicators with the lowest KMO. However, there is a
trade–off because every indicator is selected carefully and its exclusion comes
solely at other disadvantages which is why the KMO values are not further
improved here. Furthermore, Aiginger and Firgo (2015, p. 52) report lower
KMO values.

After demonstrating that each dimension is adequate to conduct the PCFA, the
number of retained factors is determined (see Table A12 and A13). The number
of retained factors in the subjective SCCI is naturally lower as it contains fewer
indicators in each dimension. Solely one factor remains in dimension D of the
subjective SCCI whereas six factors remain in every dimension of the objective
SCCI.

The factor loadings of the retained factors (see Table A14 and A15) are then
squared and scaled to unity sum. The normalized factor loadings are next set
in relation to the proportion of the explained variance by each retained factor
to determine the local weights of each indicator.

The weights for the dimensions are obtained via the Analytic Hierarchy Process
(AHP). First, a hierarchy structure is established with which help the intensities
of importance are assessed (see Figure 1).
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Figure 1: Hierarchy Structure for the SCCIs

The intensities of importance for the pairwise comparisons within the AHP (see
Table A16) represent the importance of one dimension compared to another
and take several aspects into account. One aspect is that the European Urban
Audit 2015 asks the respondents which issues they perceive as important. Other
aspects for the decision about the intensities of importance consider a broad
knowledge about these kinds of composite indicators which are primarily based
on objective data. Furthermore, the quality of the indicators in every dimension
is borne in mind. All in all, the CR (0.045) indicates that the intensities of
importance are consistent.
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As the last step, the global weights are calculated by multiplying the local
weights for each indicator with weights for the dimensions. Tables 4 and 5
show the results. The local weights do not vary so much within each dimension
of the subjective SCCI compared to the objective SCCI. This is because the
indicator values of the subjective SCCI are more highly correlated and no
indicator provides a lot of different values compared to others.
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Table 4: Indicator Weights of the Objective SCCI

Weight in % Weight in %
Indicator Dim. Local Global Indicator Dim. Local Global
A1O 19.81 4.77 0.94 C1O 38.73 4.75 1.84
A2O 19.81 6.24 1.24 C2O 38.73 5.09 1.97
A3O 19.81 5.21 1.03 C3O 38.73 4.23 1.64
A4O 19.81 5.04 1.00 C4O 38.73 4.66 1.80
A5O 19.81 6.23 1.23 C5O 38.73 3.97 1.54
A6O 19.81 5.15 1.02 C6O 38.73 5.14 1.99
A7O 19.81 6.27 1.24 C7O 38.73 4.83 1.87
A8O 19.81 5.86 1.16 C8O 38.73 4.66 1.80
A9O 19.81 5.11 1.01 C9O 38.73 3.46 1.34
A10O 19.81 5.01 0.99 C10O 38.73 5.11 1.98
A11O 19.81 4.97 0.99 C11O 38.73 3.00 1.16
A12O 19.81 5.21 1.03 C12O 38.73 3.50 1.16
A13O 19.81 5.49 1.09 C13O 38.73 4.69 1.82
A14O 19.81 5.19 1.03 C14O 38.73 5.49 2.13
A15O 19.81 4.20 0.83 C15O 38.73 5.06 1.96
A16O 19.81 4.01 0.79 C16O 38.73 4.45 1.72
A17O 19.81 5.72 1.13 C17O 38.73 4.04 1.57
A18O 19.81 5.00 0.99 C18O 38.73 4.20 1.63
A19O 19.81 5.32 1.05 C19O 38.73 4.71 1.82

C20O 38.73 5.21 2.02
B1O 27.48 5.30 1.46 C21O 38.73 4.68 1.81
B2O 27.48 6.17 1.70 C22O 38.73 5.07 1.96
B3O 27.48 4.10 1.13
B4O 27.48 5.30 1.46 D1O 13.97 7.60 1.06
B5O 27.48 6.14 1.69 D2O 13.97 7.34 1.03
B6O 27.48 4.81 1.32 D3O 13.97 6.83 0.95
B7O 27.48 6.42 1.76 D4O 13.97 8.35 1.17
B8O 27.48 6.26 1.72 D5O 13.97 7.18 1.00
B9O 27.48 6.18 1.70 D6O 13.97 8.46 1.18
B10O 27.48 5.68 1.56 D7O 13.97 8.45 1.18
B11O 27.48 5.56 1.53 D8O 13.97 6.99 0.98
B12O 27.48 6.42 1.76 D9O 13.97 6.78 0.95
B13O 27.48 3.23 0.89 D10O 13.97 6.49 0.91
B14O 27.48 5.54 1.52 D11O 13.97 7.13 1.00
B15O 27.48 5.66 1.56 D12O 13.97 6.42 0.90
B16O 27.48 6.29 1.73 D13O 13.97 6.27 0.88
B17O 27.48 5.17 1.42 D14O 13.97 5.68 0.79
B18O 27.48 5.77 1.59

49



Table 5: Indicator Weights of the Subjective SCCI

Weight in % Weight in %
Indicator Dim. Local Global Indicator Dim. Local Global

A1S 19.81 35.53 7.04 C1S 38.73 18.94 7.34
A2S 19.81 32.23 6.39 C2S 38.73 20.11 7.79
A3S 19.81 32.24 6.39 C3S 38.73 20.15 7.80

C4S 38.73 19.95 7.73
B1S 27.48 16.50 4.54 C5S 38.73 20.85 8.08
B2S 27.48 16.23 4.46
B3S 27.48 13.01 3.58 D1S 13.97 20.94 2.93
B4S 27.48 18.53 5.09 D2S 13.97 18.89 2.64
B5S 27.48 18.20 5.00 D3S 13.97 22.75 3.18
B6S 27.48 17.54 4.82 D4S 13.97 20.29 2.83

D5S 13.97 17.13 2.39

3.8 Aggregation

Aggregation is the last step to construct the SCCIs. Alongside with weighting,
aggregation generally has the largest impact on the outcome of composite
indicators (Athanasoglou & Dijkstra, 2014, p. 29). Thus, a closer look at this
aspect follows.

1. Literature

Most contributions which are considered here use the simple additive aggrega-
tion method to sum the normalized and weighted individual indicators (Aiginger
& Firgo, 2015, p. 14; Athanasoglou & Dijkstra, 2014, p. 20; Dutta et al., 2018,
p. 371; Giffinger et al., 2007, p. 14; Montalto et al., 2018b, p. 3).50 Solely
Stanković et al. (2017, p. 535) take a different approach by applying the Tech-
nique for Order Preference by Similarity to Ideal Solution (TOPSIS). The
TOPSIS assess those alternatives best which have the shortest distance to a
positive–ideal solution and the farthest distance to a negative–ideal solution
(Opricovic & Tzeng, 2004, p. 448).

50Annoni et al. (2017) do not explicitly state their aggregation method. However, as they
provide their data online, it is possible to reconstruct their index which then shows that they
also use the simple additive aggregation method.
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2. Theory

Non–compensatory and compensatory aggregation methods are distinguishable
(Gan et al., 2017, pp. 497–498). Non–compensatory methods are either based
on the properties of aggregation functions or the perspective of multi–criteria
decision making (Gan et al., 2017, p. 498). The idea behind non–compensatory
aggregation methods is that increases in values of one indicator cannot offset
decreases in values of another indicator (R. Greene, Devillers, Luther, &
Eddy, 2011, p. 413). In some situations this property is preferable. However,
non–compensatory aggregation methods come at the price of a huge loss of
information because they do not consider the intensity of preferences (Munda
& Nardo Michaela, 2005, p. 15). For the SCCIs this would mean that it is not
important how much better or worse a city performs in the indicators. Due to
this major drawback solely compensatory methods are taken into account for
the SCCIs.

Despite the theoretical assumption of preferential independence which is unlikely
to meet (Gan et al., 2017, p. 497), compensatory aggregation methods are more
realistic because they imply a trade–off between indicator values (R. Greene
et al., 2011, p. 416). The most prominent compensatory aggregation methods
are the simple additive aggregation and the simple geometric aggregation
(Zhou, Fan, & Zhou, 2010, p. 361). TOPSIS is also a compensatory aggregation
method but is less common (Zhou & Ang, 2009, p. 88). Zhou and Ang (2009)
provide a measure to compare compensatory methods. Based on an information
loss concept (Zhou, Ang, & Poh, 2006), their results suggest that the simple
geometric aggregation leads to the least loss of information followed by the
simple additive aggregation while TOPSIS performs worse (Zhou & Ang, 2009,
p. 93). TOPSIS is therefore not used as an aggregation method for the SCCIs.
Central to the usage of the simple geometric aggregation is that it allows
compensation between indicators solely within limitations as very low values
in an indicator can not that easily be compensated by high values in other
indicators (Gan et al., 2017, p. 497). Let ωi be the ith indicator weight and xi

the ith indicator value. Then the score for the ith city in the objective as well
as in the subjective SCCI is given by:
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SCCIi =
n∏
i

xωi
i (12)

Instead, the simple additive aggregation implies a full trade–off among indicator
values (R. Greene et al., 2011, p. 420). This property makes the simple additive
aggregation the best suited for the SCCIs because there is no reason apparent
why very bad values should be more important in the calculation than very
good values. Let ωi be the ith indicator weight and xi the ith indicator value.
Then the score for the ith city in the objective as well as in the subjective SCCI
is given by:

SCCIi =
n∑
i

xiωi (13)

3. Application

The simple additive aggregation is used to calculate the scores for the objective
and subjective SCCI. Tables 6 and 7 show the results. Additionally, the results
for each dimension are in the appendix (see Tables A17 and A18).
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Table 6: Results of the Objective SCCI

# City Score # City Score

1 Prague 0.5485 34 Vilnius –0.0260
2 Stockholm 0.5378 35 Rennes –0.0400
3 Munich 0.5250 36 Bologna –0.0423
4 Luxembourg 0.5057 37 Kraków –0.0533
5 Graz 0.5002 38 Budapest –0.0613
6 Bratislava 0.4928 39 Ostrava –0.0928
7 Helsinki 0.4566 40 Glasgow –0.1034
8 Vienna 0.4538 41 Nicosia –0.1104
9 Amsterdam 0.4264 42 Newcastle –0.1224
10 Paris 0.4229 43 Riga –0.1245
11 Copenhagen 0.4177 44 Barcelona –0.1370
12 Hamburg 0.3736 45 Manchester –0.1450
13 Berlin 0.3057 46 Rome –0.1743
14 Leipzig 0.2753 47 Sofia –0.1808
15 Ljubljana 0.2609 48 Liège –0.1818
16 Dublin 0.2280 49 Gdańsk –0.1877
17 Rostock 0.2179 50 Belfast –0.1974
18 Antwerp 0.2132 51 Valletta –0.2083
19 London 0.2121 52 Lille –0.2170
20 Warsaw 0.1274 53 Athens –0.2256
21 Brussels 0.1067 54 Oviedo –0.2440
22 Bordeaux 0.0948 55 Zagreb –0.2512
23 Rotterdam 0.0774 56 Turin –0.3141
24 Malmö 0.0752 57 Białystok –0.3336
25 Groningen 0.0693 58 Málaga –0.3347
26 Aalborg 0.0513 59 Košice –0.3632
27 Lisbon 0.0378 60 Bucharest –0.4275
28 Madrid 0.0371 61 Miskolc –0.4997
29 Strasbourg 0.0141 62 Cluj–Napoca –0.5659
30 Tallinn –0.0046 63 Naples –0.6251
31 Verona –0.0062 64 Burgas –0.6574
32 Marseille –0.0139 65 Palermo –0.7761
33 Cardiff –0.0169
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Table 7: Results of the Subjective SCCI

# City Score # City Score

1 Aalborg 1.2977 34 Prague 0.0452
2 Graz 0.9329 35 Dublin 0.0205
3 Munich 0.9171 36 Ostrava –0.0713
4 Vienna 0.9029 37 Berlin –0.0888
5 Luxembourg 0.8696 38 Kraków –0.0980
6 Groningen 0.8628 39 Zagreb –0.1312
7 Cardiff 0.7974 40 Valletta –0.1619
8 Copenhagen 0.7410 41 Lille –0.1771
9 Belfast 0.7299 42 Málaga –0.2285
10 Stockholm 0.7227 43 Paris –0.2482
11 Newcastle 0.6829 44 Riga –0.2515
12 Helsinki 0.6771 45 Warsaw –0.2925
13 Glasgow 0.6563 46 Verona –0.3047
14 Malmö 0.5755 47 Brussels –0.3064
15 Rennes 0.5684 48 Budapest –0.3574
16 Hamburg 0.5645 49 Barcelona –0.3956
17 Rostock 0.5424 50 Košice –0.4162
18 Leipzig 0.5075 51 Liège –0.4312
19 Manchester 0.4905 52 Bologna –0.5068
20 Antwerp 0.4731 53 Miskolc –0.5809
21 Rotterdam 0.4293 54 Nicosia –0.6364
22 Bordeaux 0.4181 55 Bratislava –0.7289
23 Ljubljana 0.3686 56 Turin –0.7830
24 Cluj–Napoca 0.3624 57 Marseille –0.8192
25 Amsterdam 0.3377 58 Madrid –0.8647
26 London 0.3339 59 Lisbon –0.8851
27 Strasbourg 0.3054 60 Bucharest –0.9239
28 Białystok 0.2854 61 Sofia –0.9674
29 Oviedo 0.2794 62 Rome –1.6344
30 Tallinn 0.2142 63 Naples –1.6372
31 Burgas 0.1927 64 Athens –1.6602
32 Vilnius 0.1434 65 Palermo –1.7991
33 Gdańsk 0.1395
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3.9 Uncertainty and Sensitivity Analysis

There exists a consensus on the importance of uncertainty analysis (UA) and
sensitivity analysis (SA), but often models lack this step (Hermans, van den
Bossche, & Wets, 2009, p. 1223). Therefore, this subsection SCCIs provides
uncertainty and sensitivity analysis results.

1. Literature

Athanasoglou and Dijkstra (2014, p. 29) employ an UA and a SA in which
they use Monte Carlo experiments to test the robustness of their modeling
choices with respect to weights and aggregation. Dutta et al. (2018, p. 76)
also use Monte Carlo simulations, and besides weights and aggregation, they
additionally assess the impact of the treatment of missing values on their
composite indicator. Furthermore, Montalto, Jorge Tacao Moura, Langedijk,
and Saisana (2018c, p. 6) apply Monte Carlo simulations. They run it on their
normalization and weighting choices.

Aiginger and Firgo (2015), Annoni et al. (2017), Giffinger et al. (2007) and
Stanković et al. (2017) do not offer an UA and a SA.

2. Theory

UA and SA are related and should be run in tandem (Saltelli et al., 2008,
p. 1). UA concentrates on uncertainties in the inputs (i.e., the different stages
to construct the composite indicator) and how they conjunctively affect the
values of the composite indicator, whereas SA identifies how much each source
of uncertainty contributes to the variance of the composite indicator values
(Greco, Ishizaka, Tasiou, & Torrisi, 2018, p. 21; Saisana, Saltelli, & Tarantola,
2005, p. 308). Uncertainties arise from all steps in the construction line of the
composite indicator (Saisana et al., 2005, p. 309). Uncertainty and sensitivity
analysis should thus ideally concentrate on all of these steps. However, the
choices of a weighting scheme and an aggregation method generally have the
largest impact on composite indicators (Athanasoglou & Dijkstra, 2014, p. 29).
Therefore, an UA and a SA on those stages in the construction of the SCCIs
are conducted.
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Even though other authors in a similar strand of literature rely on Monte
Carlo simulations (Athanasoglou & Dijkstra, 2014, p. 29; Dutta et al., 2018,
p. 76; Montalto et al., 2018c, p. 6), the UA and SA here use one–factor–at–a–
time (OAT). The idea behind OAT is to change one option at a time within
a particular construction stage while other stages are held constant (Tate,
2012, p. 331). In general, OAT is the most popular SA technique (Saltelli &
Annoni, 2010, p. 1509). Despite several drawbacks in respect to the theoretical
groundings and meaningfulness of this approach (Saltelli & Annoni, 2010,
pp. 1508–1510; Saltelli et al., 2008, pp. 66–76; Tate, 2012, pp. 331–332), it
has some endorsing features. OAT enables to precisely determine the effect of
changing a specific option at the construction stage (Saltelli et al., 2008, p. 75).
Furthermore, OAT does not involve any noise when there is no stochastic term,
the sensitivities refer to the same starting point, and it never detects irrelevant
changes as influential (Saltelli & Annoni, 2010, p. 1510).

With OAT, UA and SA can be done at the same time as in Hudrliková (2013,
pp. 470–471). UA is done with OAT in the sense that there are in the end
several different scenarios which are observable. Moreover, descriptive statistics
with respect to deviations from the baseline scenario can be reported. SA is
done in the sense that there is always a scenario which is the same despite
one change. This offers the possibility to investigate the influence of specific
changes closely.

Lastly, the validation of the modeling choices is done via correlation coefficients.
Therefore, Pearson correlation coefficients (PCCs) need to be calculated (see
Pearson (1895)). Correlation coefficients enable to get insights about the
strength and direction of the linear relationship between pairs of variables
(Mukaka, 2012, p. 71). If the correlation coefficients are high, the SCCIs are
insensitive to uncertainties in modeling choices (Tate, 2012, p. 331).

3. Application

As discussed, the OAT is applied to weighting and aggregation as the most
influential construction stages of composite indicators. In OAT it is crucial
to limit the focus on some construction choices against which the SCCIs as
baseline scenarios are tested. Without a limitation on construction stages as
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well as on choices within the construction stage, OAT would lead to a few
hundred or even a thousand cases. The examination of a hundred or a thousand
of cases would be confusing and is also beyond the scope here in respect to
computational costs.

The UA and SA for the SCCIs contemplate twelve different cases with respect
to three construction stages, including the baseline scenario which represents
the choices made for the SCCIs. The construction stage weighting is separated
in two steps because the weighting scheme for the SCCIs implies PCFA to
weigh indicators within the four different dimensions and the AHP to weigh
dimensions.51 In each of the three construction stages, different modeling
choices are considered beneath the decisions for the SCCIs. Those alternative
modeling choices are now introduced.52

In the first weighting stage, the factor analysis approach for weighting proposed
by the OECD (2008, pp. 89–91) is contemplated due to the widespread influence
of its handbook on the development of composite indicators. Furthermore, the
option that equal weights are assigned to every indicator within each dimension
is examined during this stage as it is the most commonly weighting procedure.
In the second weighting stage, again, equal weights are looked at among the
baseline scenario as the most common weighting procedure. Recall here that
equal weights for each dimension imply higher weights for indicators within a
dimension with a smaller number of indicators. In the aggregation stage, the
simple geometric aggregation is considered as a different option compared to
the simple additive aggregation because it provides interesting insights about
the outcome for the SCCIs when the idea is that low indicator values can not
be compensated so easily by higher values in other indicators. The simple
geometric aggregation also has the best performance of common compensatory
aggregation methods in terms of information loss. Furthermore, the mentioned
ineptitude of non–compensatory methods for the SCCIs excludes those aggre-

51Aggregation could also be divided into two steps. One step for aggregating the indicators
and the other for weighting the dimensions. However, due to the limitations of the number
of scenarios, the aggregation method for the first step in weighting is here always the same
as for the second step in weighting.

52See the theoretical parts in Subsection 3.7 and Subsection 3.8 for more details on the
chosen alternatives.
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gation procedures. The application of the simple geometric aggregation is not
directly possibly because z–scores are used for normalization and thus, negative
values would distort the results. Therefore, it is first necessary to get positive
values. Since the lowest z–score in the SCCIs is –3.34, the value five is simply
added to every single z–score as suggested by Saisana (2012, p. 6).

Figure 2 displays the different modeling choices for the UA and SA which
leads to twelve scenarios. ∅ describes the equal weighting procedure, Σ stands
for the simple additive aggregation method, and Π for the simple geometric
aggregation method. Furthermore, FA (OECD) points on the factor analysis
weighting as suggested by the OECD (2008) while PCFA and AHP denote the
two weighting procedures implemented in the SCCIs. Scenario 1 as the baseline
scenario is bold and represents the choices made for the SCCIs.

∏ ∏ ∏ ∏ ∏ ∏

Figure 2: Scenarios of the UA and SA

Figures 3 and 4 portray the results of the UA and SA graphically to facilitate
its evaluation. They display the range between the minimum and the maximum
rank for each city in the twelve scenarios while the triangles point on the
scenarios’ mean rank. Figures 3 and 4 are both ordered according to their
outcome in the baseline scenario, starting with Prague on the top left in the
case of the objective SCCI, and with Aalborg in case of the subjective SCCI.
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Figure 3: UA and SA Results of the Objective SCCI
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Figure 4: UA and SA Results of the Subjective SCCI
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In both SCCIs, objectively and subjectively, cities with an average performance
are most sensitive to the modification of modeling choices. Notwithstanding the
scenario, cities on top and at the bottom of the SCCIs have a similar smartness.
A plausible explanation is that the cities’ scores in the SCCIs are quite close
to each other around the average ranks and more spread at the top and the
bottom (see Tables 6 and 7).

The exact results of the UA and SA are shown in Tables A19 and A20. Solely
the ranks are reported there because the scores are not easily comparable
because the scenarios which use the simple additive aggregation all have a zero
mean, but the scenarios which use the simple geometric aggregation each time
have a different mean. The widest range between a minimum and a maximum
rank according to both SCCIs is Verona. Verona is ranked 31st in the objective
SCCI but would be ranked 22nd in Scenario 7 and 41st in Scenario 8. The only
city which is ranked each time the same in the objective SCCI is Palermo on
the last rank. The cities which are ranked each time the same in the subjective
SCCI are Aalborg on the first, Cardiff on seventh, and again, Palermo on the
last rank. While Aalborg substantially outperforms the other cities in the
subjective SCCI and Palermo underperforms according to both SCCI, the fact
that Cardiff is on the same rank in each scenario is most likely by chance.

Overall, the UA and SA confirm that the outcome of the SCCIs are not too
much dependent on the modeling choices because the PCCs between the baseline
scenario and the other eleven scenarios are all well above 0.95 (see Tables A21
and A22).53

PCCs between the twelve scenarios are calculated with total scores and not with
the ranks. However, as already mentioned, these scores are not provided because
they are not very indicative as they differ by definition quite substantially
between the simple additive aggregation and the simple geometric aggregation.

53For illustrative reasons, the entire PCC matrix is displayed in Tables A21 and A22.
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4 Discussion of the Smart City Composite In-
dicators

This section discusses the results of the SCCIs. First, a closer look on connec-
tions within and between the SCCIs and their dimensions is provided. Second,
the SCCIs are compared descriptively due to population size and capital status
of the cities.54

4.1 Conjunctions Within and Between the SCCIs

This subsection wants to discuss the relationships within and between the
SCCIs, mainly based on a PCC matrix.

Recall that Tables 6 and 7 in Subsection 3.7, as well as Tables A18 and
A19, show the results of the objective and subjective SCCI. There are some
similarities and dissimilarities which can be observed at first sight. For example,
Palermo is on the last rank according to both composite indicators. Prague, on
the other hand, is on the first rank with respect to the objective SCCI and on
the 34th rank with respect to the subjective SCCI. Another interesting aspect
is that the spread of the scores is lower in the objective SCCI compared to the
subjective SCCI. Noteworthy is also that in the subjective SCCI, the score for
Aalborg as the first ranked city and the scores for Rome, Naples, Athens, and
Palermo as the cities at the bottom differ a lot from the scores of their adjacent
ranks.

Due to the sample size, it is difficult to place more precise remarks by solely
looking at the results for the SCCI. Therefore, a PCC matrix is calculated.
Table 8 shows the PCCs while O stands for the objective SCCI, S stands for
the subjective SCCI, and AO, BO, CO, DO, AS, BS, CS as well as DS point
on the different dimensions of the SCCIs.

54Population size and capital status are depicted here, but several other aspects are open
to a closer investigation in future work.
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Table 8: Pearson Correlation Coefficients of the SCCIs Performances

O S AO BO CO DO AS BS CS DS
O 1
S 0.51 1
AO 0.62 0.02 1
BO 0.91 0.43 0.59 1
CO 0.92 0.55 0.42 0.73 1
DO 0.24 0.38 –0.29 0.14 0.19 1
AS 0.53 0.92 0.07 0.45 0.55 0.35 1
BS 0.34 0.93 –0.05 0.26 0.40 0.31 0.84 1
CS 0.55 0.96 0.04 0.48 0.60 0.35 0.81 0.84 1
DS 0.43 0.93 –0.02 0.37 0.44 0.43 0.88 0.85 0.83 1

The relationship between the objective and subjective SCCI is positive with
medium strength (0.51). It points out that a city with a good performance
in the objective SCCI generally speaking also performs well in the subjective
SCCI, and vice versa. Interestingly, dimension DO is solely weakly correlated
with the objective SCCI (0.24). This is remarkable because dimension DO
itself contributes to the outcome of the objective SCCI and entails that the
correlation between DO and the other dimensions of the objective SCCI is weak
or negative.

The relationships within each SCCI provide further insights. Despite the
correlation between AO and DO (–0.29), the dimensions of the objective SCCI
are all positively correlated. The largest correlation in the objective SCCI is
between BO and CO (0.73). Both results are not that surprising. If a city
performs well in the dimension ’Infrastructure & Mobility’, it is plausible that
this could be at the expense of indicators which contribute to the dimension
’Environment & Sustainability’, and vice versa. This interpretation implies a
slight trade–off between both dimensions. Just the same idea applies to the
high correlation between BO and CO. Note that the PCC does not directly
give evidence about causalities between dimensions. However, an intuitive
explanation is that a good economy and governance as well as sound living
conditions and social cohesion are mutually dependent. Another result of the
PCC matrix is that all dimensions of the subjective SCCI are highly correlated
with each other (all above 0.8). This is intriguing and necessarily leads to
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question if surveys are able to capture detailed information about personal
impressions or if they, in fact, measure a broader picture. It could be the
case that people are not thinking deeply about every question but report more
generally about their satisfaction with certain aspects in the city which they
live in.

Lastly, the relationships between the dimensions of the objective and the
subjective SCCI are of interest. Again, dimension AO is the only one which is
negatively correlated with other dimensions (–0.05 with BS, –0.02 with DS). AO
is very weakly correlated with every dimension of the subjective SCCI (all below
|0.1|), including the correlation with AS (0.07). This property is unfavorable in
the sense that there is as good as no relationship between the objective measure
of ’Infrastructure & Mobility’ and the subjective perception of this dimension.
A look on the indicators can provide possible explanations for this issue. One
challenge is always to find subjective and objective indicators which measure
at least broadly the same aspects. This is solely broadly satisfied concerning
the two dimensions AO and AS, and an improvement of the indicators could
also improve the results. Additionally, subjective perceptions are capable to
assess the supply against the requirements for the city whereas the rationale
behind the objective SCCI is always that more is better. When looking at the
indicator values, especially of those related to transportation, it could simply
be that for example in Rostock (40th in AO, sixth in AS), the performance in
AO is not that good because not so many means of transport such as trains and
planes arrive and depart in and around the city. But people at the same time
perceive that they do not live in a large metropolitan region so that they do not
require the city to provide a sophisticated public transportation network. A lot
of people from Rostock which took part in the survey for the subjective SCCI
do maybe seldom use a different way to travel than to go by car. Contrary to
that, Paris is ranked first in AO and 41th in AS. Even though people objectively
have broad access to many ways of transportation, they are unsatisfied with
public transportation. This could be due to overcrowding, frequent delays, and
dependency on the use of public transportation.

Furthermore, it is worth noting that despite dimensions BO and BS, every di-
mension of the objective SCCI has the largest correlation with its correspondent
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dimension of the subjective SCCI (i.e., AO with AS, CO with CS, and DO with
DS). The result that three of four dimensions of the objective SCCI have the
strongest positive relationship with their correspondences is highly plausible.
Additionally, the correlations of CO with the dimensions of the subjective SCCI
are all quite high. Looking at the correlations between the dimensions the
other way around is more ambiguous. AS for example is substantially higher
correlated with all other dimensions of the objective SCCI than with AO. This
is because the outcome of all AS, BS, CS, and DS are similar as the PCCs
show (all above 0.8) and as stated before one issue could be that the questions
measure a broader picture and not what they in fact ask for.

4.2 Descriptive Comparisons of the SCCIs

The following subsection aims at closer discussing the results of the SCCIs
descriptively. An evident way to start a descriptive contemplation is to differ-
entiate between capital and non–capital cities because the sample contains all
28 capital cities of the EU. Thereafter, cities are compared according to their
size. This approach is inspired by Montalto et al. (2018a, p. 23).

Table 9 reports the mean ranks and the mean scores for capital as well as for
non–capital cities within the objective and the subjective SCCI as measures of
central tendency. Table A1 denotes in the column ’Metropolitan Code’ which
cities are capitals and which are non–capitals. A drawback is that for some
countries, there is solely the capital city in the sample and no non–capital
city. This could bias the results. Nevertheless, the means indicate that capital
cities perform better according to the objective SCCI. But at the same time,
non–capital cities perform better according to the subjective SCCI. This is
especially surprising when recalling that the correlation between both SCCIs is
positive in a medium size (0.51). An explanation for this feature of the SCCIs
is not entirely possible here. However, some hypothetical attempts to explain
the difference are provided.
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Table 9: Mean Ranks and Scores of Capital and Non–Capital Cities

Objective SCCI Subjective SCCI
Capital Non–Capital Capital Non–Capital

N 28 37 28 37
Ø City Size 1,784,452 538,447 1,784,452 538,447
Ø Rank 25.54 38.65 37.86 29.32
Ø Score 0.14 –0.10 –0.17 0.13

Capitals often get a disproportionate amount of the resources and have ag-
glomeration advantages (J. V. Henderson, 2010, p. 529; Parkinson, Meegan,
& Karecha, 2015, p. 1056).55 Moreover, capitals are substantially larger than
non–capitals. Due to that, they have a more skilled mix of employees (Elvery,
2010, p. 377) and it is easier for them to reach a critical mass for new digital
solutions which can then contribute to the smartness of the city (Neirotti et al.,
2014, p. 29). Therefore, it is evident to suggest that it is easier for capitals
to make their city smart from an objective point of view. Contrary to that,
some disadvantages of living in the capital city are potentially well captured by
perceptional data. Crowds of tourists, overfull streets on permanently occurring
events, higher rents and other aspects which include negative externalities could
offset the positive effects. Those and other diseconomies of scale could make
large cities less smart (Neirotti et al., 2014, p. 29). The residents of capitals
also distrust that the local administration has their interests predominantly
in mind (de Vries & Sobis, 2018, p. 225). The distrust could influence other
indicators and dimensions as well.

Those basic attempts to explain why the ranks and scores of the SCCIs ac-
cording to the mean give a first idea about possible reasons for their opposite
outcome. Furthermore, Table 9 also indicates that the capital cities in the
sample on average have substantially more inhabitants than the non–capital
cities (1,784,452 inhabitants compared to 538,447 inhabitants). For this reason,
the cities are further differentiated descriptively with respect to the number of
their inhabitants.

55They are typically the political center, contain the best universities and research in-
stitutions, can attract human capital more easily and companies headquarters are located
there.
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Table 10 shows the mean ranks and scores of the cities in the sample for the
SCCIs according to their size in terms of the number of inhabitants in 2015.
Cities of more than one million inhabitants are classified as XXL, 500,000 to
1,000,000 inhabitants denote XL cities, 250,000 to 500,000 inhabitants are L
cities, and 50,000 to 250,000 inhabitants are M cities. This classification follows
Montalto et al. (2018a, pp. 21–23).

Table 10: Mean Ranks and Scores According to Population Sizes

Objective SCCI
City Size Class XXL XL L M

N 17 21 16 11
Capitals 14 8 3 3

Non–Capitals 3 13 13 8
% Capitals 82.35 38.10 18.75 27.27
Ø City Size 2,827,967 672,563 342,616 200,553
Ø Rank 25 34.62 34.75 37.3
Ø Score 0.14 –0.04 –0.03 –0.12

Subjective SCCI
City Size Class XXL XL L M

N 17 21 16 11
Capitals 14 8 3 3

Non–Capitals 3 13 13 8
% Capitals 82.35 38.10 18.75 27.27
Ø City Size 2,827,967 672,563 342,616 200,553
Ø Rank 39.24 34.76 28 27.36
Ø Score –0.25 –0.09 0.21 0.25

Overall, Paris with 9,782,671 inhabitants is the largest city in the sample for
the SCCIs and Luxembourg with 111,387 inhabitants is the smallest city (see
Table A23 for the concrete classifications of the cities to XXL, XL, L, and M).
The results for the mean ranks and scores are similar to the results for the
capital and non–capital cities and, again, more or less vice versa. Generally
speaking, a city is objectively smarter when it is larger, but people perceive it
as smarter when it is smaller. Concerning their geographical position, the cities
are quite well distributed across those four size classes so that there should not
be a large bias according to their location. Recall again that this is particularly
surprising when considering the correlation coefficient between the objective
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and subjective SCCI (0.51).

More detailed information about the differences in the outcomes of the SCCIs
gives another PCC matrix (see Table 11). The terms ’Objective’ and ’Subjective’
describe the scores of the two SCCIs. Furthermore, the city size in terms of
inhabitants is further differentiated in an untreated and a treated version. The
untreated version takes the original values for the city sizes as shown in Table
A23. The treated version winsorizes outliers as described in Subsection 3.5.

Table 11: PCCs Between the SCCIs and Population Sizes

Objective Subjective Size (Untreat.) Size (Treat.)
Objective 1
Subjective 0.51 1

Size (Untreat.) 0.22 –0.17 1
Size (Treat.) 0.19 –0.34 0.74 1

The PCCs confirm what is displayed by the mean values for the city ranks and
scores. There exist small positive correlation coefficients between the objective
SCCI scores and the untreated as well as treated city sizes (0.22 and 0.19)
Furthermore, there exist small negative correlation coefficients between the
subjective SCCI scores and the untreated as well as treated city sizes (–0.17
and –0.34). Due to the treatment of the six largest cities within the sample,
the correlation coefficient between the values of the untreated and the treated
city sizes is not that close to one as could have been expected (0.74).

Reasons for the differences in the outcome of the SCCIs according to the city
sizes are possibly similar to those mentioned for the differences between capital
and non–capital cities. However, further investigations are required to provide
more compelling and backed up arguments.
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5 Identification of Smart City Drivers

“We live in an era of cheap data but expensive information.”

–

Weisberg (2005, p. 211)

This section provides an econometric contemplation to analyze what factors
drive a city to be smart. First, some theoretical considerations are made.
Second, the independent variables of the models are precisely specified. Lastly,
the results of the regression analysis are presented and thereafter discussed.

5.1 Theoretical Considerations

As in other contributions to the literature which study issues closely related to
the smart cities notion here (see Subsection 2.3), a multiple linear regression
model is used to identify what makes a city smart. A linear regression model is a
good starting point and also “the single most useful tool in the econometricians
kit” (W. H. Greene, 2012, p. 52). Moreover, a standard multiple linear regression
fits the needs of this research project because there are no specific issues for
panel data to worry about and appropriate handling of potential clusters is not
achievable here.56

The multiple linear regression model relies on six assumptions which are
presented briefly and in accordance with W. H. Greene (2012, p. 56):

A1. Linearity: There is a linear relationship between the dependent variable
and the independent variables.

56In principle, it could be the case that there are clustered data. Especially the errors
of cities from the same country in the subjective SCCI could be associated because such
clusters often occur in survey data. However, clusters can not be analyzed conveniently by a
standard cluster regression procedure in this case due to sample size and potential clusters
(see Bell, Morgan, Kromrey, and Ferron (2010), McNeish and Harring (2017), and Sarstedt
and Mooi (2014)). Therefore, Subsection 5.2 takes this issue into account by introducing
suitable independent variables.
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A2. Full Rank: There is no exact linear relationship between any of the
independent variables in the model.

A3. Exogeneity of the Independent Variables: The expected value of
the error term at each observation in the sample is not a function of the
independent variables observed at any observation.

A4. Homoscedasticity and Nonautocorrelation: Each disturbance has
the same finite variance and is uncorrelated with every other disturbance.

A5. Exogenously Generated Data: The process that generates the sample
data is independent of the process that generates the error term.

A6. Normal Distribution: The error term is normally distributed.

Another assumption is added which is not necessarily a property of the standard
multiple linear regression model, but its fulfillment can contribute to avoid
severely statistical problems (W. H. Greene, 2012, pp. 129–130):

A7. Non–Multicollinearity: The independent variables are not too highly
correlated.

The last assumption takes into account that outlying values could have a large
influence on the regression results (Casson & Farmer, 2014, p. 595; Weisberg,
2005, p. 194):

A8. No Outliers: No dependent or independent variable has outlying values.

For meaningful results, the multiple regression model ideally fulfills these
eight assumptions. It is then possible to use OLS to find the Best Linear
Unbiased Estimator (BLUE) because the BLUE satisfies, in any case, the first
six assumptions and thus, the Gauss–Markov–Theorem (Weisberg, 2005, p. 27).

A guideline to verify the assumptions of the multiple linear regression comes
from Chen, Ender, Mitchell, and Wells (2003). Assumptions A3 and A5 are
not explicitly tested because they are mainly an issue for time series or clusters.
A closer look at assumption A1 can be done graphically (Casson & Farmer,
2014, p. 592; Osborne & Waters, 2002, pp. 1–2). Assumption A2 is checked
automatically by Stata 13 which is the statistical program used here. Statistical
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tests are implemented for assumptions A4, A6, and A7. The Breusch–Pagan /
Cook–Weisberg test (see Breusch and Pagan (1979), and Cook and Weisberg
(1983)) is employed for assumption A4 in line with a scatter plot, the Shapiro–
Wilk test is used for assumption A6 (see Subsection 3.5), and the Variance
Inflation Factor (VIF) checks assumption A7 (see O’Brien (2007)) while a rule
of 10 for the VIF is applied because that rule is most common (O’Brien, 2007,
pp. 673–674).57 Outliers (assumption A8) are detected with the help of the
Shapiro–Wilk test in line with a graphical assessment (see Subsection 3.5).
The assessment of values being outliers is done with the Shapiro–Wilk test for
normality because normality of the variables has advantageous features for the
regression analysis (Casson & Farmer, 2014, pp. 594–595).

Considering the SCCIs and potential independent variables, it is likely that
outliers could be an issue. An option is to employ a logarithmic transformation
when the data is skewed (Benoit, 2011, p. 2). Regression results can then be
interpreted as elasticities (Benoit, 2011, p. 4). However, it would be necessary
to add a constant because some values for the SCCIs are negative. Even though
adding a constant changes solely the mean, but not the variance, skewness,
or kurtosis, it influences the subsequent transformation (Osborne, 2002, p. 3).
Therefore, Osborne (2002, p. 3) suggests that the minimum values of each
variable should be moved to one in case that a logarithmic transformation is
applied.

In the case that outliers are present in the variables, another possibility is to
run a robust regression with an M–estimator in addition to the OLS regression.
Verardi and Croux (2009, pp. 441–442) describe a robust regression with an
M–estimator which is based on Huber (1964) while observations with a Cook’s
distance (see Cook (1977)) above one receive a zero weight.58

57Note that O’Brien (2007) discusses the appropriateness of such a rule of thumb. However,
no further investigation is undertaken here as long as there is clearly no violation against the
rule of 10.

58Verardi and Croux (2009) propose a more robust estimator in their article. However,
their empirical investigation is sparse, and pitfalls of this method are hard to ascertain.
Therefore, the described M–estimator is used in the presence of outliers because it is nearly
as efficient as OLS and also the most common robust estimator (Alma, 2011, p. 413).

70



Another aspect to bear in mind is that the number of independent variables
should not be too large, considering the small sample size for the SCCIs (Brooks
& Barcikowski, 2012, p. 2). However, there is no unambiguous rule, and similar
studies with a similar amount of observations include a lot of independent
variables (see Neirotti et al. (2014)).

Moreover, despite the logarithmic model, all continuous variables are normalized
with the help of z–scores before the regression is run. When using z–scores,
the beta coefficients show which independent variables are most important
in the explanation of the dependent variable. An one standard deviation
increase in an independent variable contributes to an expected increase or
decrease in the dependent variable by the size of the beta coefficient (Nathans,
Oswald, & Nimon, 2012, pp. 2–3).59 This approach is especially helpful
when the measurement units are not readily interpretable (Hoyt, Leierer, &
Millington, 2006, p. 227). Dummy variables are not normalized. Even though
the normalization would also work in principle, the interpretation of dummy
variables is more expedient when assessed against the difference between its
counterpart. Furthermore, the dummy variables solely influence the intercept
and not the slope of the regression line (Hoyt et al., 2006, p. 229).

When building a regression model, the problem can occur that there are
unnecessary variables in the model (overfitting), or that important variables
are not in the model (underfitting) (Chatterjee & Simonoff, 2013, pp. 23–24).
Common data–driven techniques to overcome these problems are controversial
(see Heinze and Dunkler (2017), and Ratner (2010)). Therefore and because the
aim is to specify the same models which can explain both SCCIs as dependent
variables, it is most appropriate that the selection of variables is theory–driven.

59There are disadvantages of the normalization procedure when the independent variables
are correlated. However, other approaches do come along with other disadvantages. See
Nathans et al. (2012) for a detailed discussion.
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5.2 Specification of the Independent Variables

The following specification of the econometric model to further investigate the
SCCIs takes into account similar contributions to the literature. A challenge
is thereby that it is ambitious to find a model which can fit for both SCCIs
as dependent variables. This approach implies the drawback that it is hardly
possible to find a model which fits the objective and subjective SCCI to the
same extent. However, the approach can offer some interesting insights which
other approaches would not be capable of. With this approach, it can be
shown if the same variables drive the smartness of a city objectively as well as
subjectively and if so, to which amount they do. The dependent variable in the
econometric model is the objective SCCI and the subjective SCCI, respectively.
Caragliu and Del Bo (2015) employ an akin approach as they calculate a
regional smartness indicator which they then use as the dependent variable in
their models.

The independent variables are:

• Population:
’Population’ depicts the number of inhabitants in each of the 65 European
cities under investigation here. It takes into account that cities have
different characteristics with respect to their size. The provision of infras-
tructure and services differ greatly among various city sizes. ’Population’
is also used by Neirotti et al. (2014, p. 33), Oueslati et al. (2015, p. 1607),
and Węziak–Białowolska (2016, p. 93). Moreover, Subsection 4.2 shows
that larger cities tend to perform better in the objective SCCI and worse
in the subjective SCCI. Therefore, it is of interest to investigate the
influence of population size more closely.

• GDP per Capita in PPS:
’GDP per Capita in PPS’ considers the economic strength of each city.
As a common and convenient practice, GDP per capita is measured in
purchasing power standard (PPS) to avoid issues in price differences across
countries. GDP per capita is commonly employed in similar studies (see
Caragliu and Del Bo (2015, p. 78), Neirotti et al. (2014, p. 33), Oueslati
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et al. (2015, p. 1607), and Węziak–Białowolska (2016, p. 93)). A major
drawback in the implementation of ’GDP per Capita in PPS’ in the
multiple linear regression model is that it is also an indicator of the
objective SCCI and weights 1.84 % in it. Similar indicators as ’GDP
per Capita in PPS’ are part of the objective indicator which excludes
the option to use a different high–quality variable for economic strength.
Nevertheless, ’GDP per Capita in PPS’ needs to be part of the model
because it assumable has a significant influence on the smartness of the
cities and also it is necessary to control for the economic strength of the
cities when considering the effects of the other independent variables.

• Population Density:
’Population Density counts the number of inhabitants per square kilo-
meter. Dense urban areas facilitate social interactions which contribute
to the spread of knowledge (Glaeser & Gottlieb, 2006, pp. 1275–1276).
On the other hand, density can lead to diseconomies in areas as real
estate, security, transportation, and energy (Neirotti et al., 2014, p. 29).
’Population Density’ is also used by other authors that investigate issues
on a city level directly (see Neirotti et al. (2014, p. 33)) or via a dummy
for urbanization (see Caragliu and Del Bo (2015, p. 78)).

• Cooling Degree Days:
’Cooling Degree Days’ is a proxy for the climate in the contemplated
cities. Climate can influence several objective factors of the cities such
as buildings or environment and it can be highly relevant for subjective
perceptions. Węziak–Białowolska (2016, p. 90) follows Knez (2005) and
argues that climate shapes the experience of a place. This leads her to
introduce a dummy variable for Southern European cities. Furthermore,
Oueslati et al. (2015, p. 1607) employ the average temperature for the
warmest months of the year in their model.

• Heating Degree Days:
’Heating Degree Days’ is like ’Cooling Degree Days’ a proxy for the
climate. The rationale behind its usage is the same as for ’Cooling
Degree Days’. Including both of these variables in the regression has
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the advantage that a more nuanced view about the climatic situation
in the cities can be obtained. However, there could arise problems due
to multicollinearity (assumption A7). In the case of multicollinearity
according to the VIF, one of these two variables is excluded from the set
of independent variables.

• Dummy Capital:
A dummy variable to distinguish between capital and non–capital cities is
not used in similar studies. However, following the descriptive statistics
in Subsection 4.2 gives reason to include this dummy variable in the
regression model because capital cities tend to be smarter objectively
and at the same time less smart subjectively. Furthermore, the sample
characteristics make it appropriate to use this dummy variable because
the 65 European cities in the sample include all 28 capital cities of the
EU.

• Dummy New Member State:
Another dummy variable contrasts new and old member states of the EU.
New member states are those that entered the EU in this century. The
idea is that there could be differences in the smartness of new and old
member states due to historical developments, even if there is a control
for economic strength and climate. Since all cities in the sample are in
the EU, this differentiation is possible. It goes along with Caragliu and
Del Bo (2015, p. 73).

Table A24 shows descriptive statistics for the continuous independent variables.
The independent variables are all from 2015.60 The source is always Eurostat.
Despite ’Cooling Degree Days’ and ’Heating Degree Days’, the independent
variables are all on the city level. ’Cooling Degree Days’ and ’Heating Degree
Days’ are measured on a regional level which for these specific variables is a
plausible approximation.

60Some values for the variables ’Population’ and ’Population Density’ are from previous
years.
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Finally, the equation for the multiple regression is given by:

SCCIi = β0 + βXi + εi (14)

where SCCI i stands for the ith city while both, the objective and the subjective
SCCI can be used as dependent variables. β0 is the intercept, β are the
regression coefficients of the independent variables, Xi are the independent
variables to estimate the smartness for the ith city, and εi is the ith error.

5.3 Results of the Econometric Models

The regression model introduced in this section is run once with the objective
SCCI as the dependent variable and another time with the subjective SCCI
as the dependent variable. In both cases, most assumptions of the multiple
linear regression model are satisfied which generally confirms that OLS is an
appropriate estimator. Tables A25, A26, and A27 show the test statistics
in respect to assumptions A4, A6, and A7. Table A25 indicates that the
assumption of homoscedasticity is violated in the case that the subjective SCCI
is the dependent variable. A closer look at this violation with the help of a plot
of residuals vs. fitted values for the OLS regression when the subjective SCCI
is the dependent variable shows that there is not too much change in variation
of the residuals (see Figure A1). Even though it seems that heteroscedasticity
is not challenging the OLS regression badly, another regression with robust
standard errors is run for both SCCIs. Robust standard errors as used here
are associated with White (1980) and a common practice to tackle the issue of
heteroscedasticity (Imbens & Kolesar, 2012, p. 1).

Furthermore, the Shapiro–Wilk test (see Table A28) in line with a graphical
assessment emphasizes that there are variables which contain outliers.61 The
outliers lead to slightly ambiguous results for linearity (assumption A1). For

61This is especially prevalent for the variable ’Population’. Paris (9,782,671 inhabitants),
and London (8,730,803 inhabitants) are far more populated than the other cities in the
sample. Berlin is third with 3,469,849 inhabitants.
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the issue of outliers which also slightly influences the linearity assumption,
a logarithmic regression and a robust regression with an M–estimator as
described in Subsection 5.1 is conducted.62 This can also improve the issue of
heteroscedasticity (Benoit, 2011, p. 5; Wilcox & Keselman, 2004, p. 350).

The coefficients of the multiple regressions are shown in Tables 12 and 13.
Model (1) relies on the OLS estimator, model (2) is conducted with robust
standard errors, in model (3) a logarithmic transformation is applied to the
variables prior to the OLS estimation, and model (4) uses an M–estimator for
robust regressions. Note that the reason why the coefficients of model (3) differ
substantially is that they are not normalized with the help of z–scores.

The results in Table 12 clearly emphasize that economic strength is the main
driver for the objective SCCI. Moreover, population density has a significantly
negative impact on the smartness of a city according to all four models while
the mere number of inhabitants does not influence the smartness significantly.
The results are more ambiguous for the climate variables, but it looks as if
colder areas tend to be smarter objectively. Furthermore, three of the four
models indicate that a city is objectively speaking smarter when it is capital
and less smart when it is a new member state of the EU. Notably, the model fit
is quite good, especially when compared to similar studies (see Subsection 2.3).
The variables in every model are jointly significant in explaining the objective
SCCI and the model fit is quite good.

The results in Table 13 for the subjective SCCI as the dependent variable also
point on the importance of the economic state for the smart performance of a
city. It is remarkable that population density contributes again negatively to
the smartness. Besides, there is some indication that colder areas within the
EU contribute in principle to a subjectively perceived smarter performance. If
a city is a capital city, its smart performance is significantly worse than the
performance of a non–capital city. Population and being a new member state
of the EU have no significant impact on the subjective smart performance. The
model fit is intermediate, and the independent variables are jointly significant.

62The values are not normalized to z–scores in case of the logarithmic regressions because
the regression coefficients can then be interpreted as elasticities.
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Table 12: Estimations of Smart City Drivers for the Objective SCCI

Independent Variables Dependent Variable: Objective SCCI
(1) (2) (3) (4)

Population 0.099 0.099 0.001 0.096
(0.095) (0.089) (0.023) (0.102)

GDP per Capita in PPS 0.640*** 0.640*** 0.380*** 0.642***
(0.091) (0.093) (0.053) (0.098)

Population Density –0.256*** –0.256*** –0.056** –0.242**
(0.094) (0.093) (0.026) (0.100)

Cooling Degree Days 0.019 0.019 0.003 0.012
(0.131) (0.103) (0.01) (0.140)

Heating Degree Days 0.237* 0.237** 0.090* 0.206
(0.127) (0.106) (0.051) (0.136)

Dummy Capital
(1 = Capital)

0.392** 0.392** 0.051 0.372*
(0.194) (0.176) (0.045) (0.207)

Dummy New Member State
(1 = New Member State)

–0.459* –0.459** –0.050 –0.463**
(0.189) (0.195) (0.045) (0.202)

Constant –0.006 –0.006 –3.672 –0.004
(0.108) (0.101) (0.534) (0.115)

Obs. 65 65 65 65
R2 0.7228 0.7228 0.7257
Adj. R2 0.6888 0.6920
F(7, 57) 21.23 20.58 21.54 17.99
Prob > F 0.000 0.000 0.000 0.000
Notes: Standard errors in parentheses;
* 0.05 < p–value < 0.1, ** 0.01 < p–value < 0.05, *** p–value < 0.01
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Table 13: Estimations of Smart City Drivers for the Subjective SCCI

Independent Variables Dependent Variable: Subjective SCCI
(1) (2) (3) (4)

Population –0.002 –0.002 –0.048 0.075
(0.123) (0.097) (0.046) (0.116)

GDP per Capita in PPS 0.330*** 0.330*** 0.338*** 0.310***
(0.117) (0.101) (0.107) (0.111)

Population Density –0.269** –0.269** –0.050 –0.327***
(0.094) (0.112) (0.052) (0.114)

Cooling Degree Days –0.194 –0.194 –0.061*** –0.343**
(0.168) (0.165) (0.020) (0.159)

Heating Degree Days 0.296* 0.296** 0.120 0.257
(0.163) (0.117) (0.102) (0.155)

Dummy Capital
(1 = Capital)

–0.422* –0.422** –0.160* –0.528**
(0.250) (0.189) (0.089) (0.236)

Dummy New Member State
(1 = New Member State)

–0.166 –0.166 0.116 –0.212
(0.242) (0.235) (0.091) (0.230)

Constant 0.240* 0.240* –2.171** 0.301**
(0.138) (0.130) (1.071) (0.131)

Obs. 65 65 65 65
R2 0.5420 0.5420 0.5802
Adj. R2 0.4857 0.5286
F(7, 57) 9.64 9.41 11.25 14.68
Prob > F 0.000 0.000 0.000 0.000
Notes: Standard errors in parentheses;
* 0.05 < p–value < 0.1, ** 0.01 < p–value < 0.05, *** p–value < 0.01
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Comparing both SCCIs, it is prevalent that they provide similar estimates on
’GDP per Capita in PPS’ and on ’Population Density’, and to a lesser extent
also on the climatic situation. The result for ’GDP per Capita in PPS’ is
somewhat expectable, but the result for ’Population Density’ is remarkable
when bearing in mind that the models control for the number of inhabitants. In
contrast, capitals can explain an objective smart performance and non–capitals
can explain a subjective smart performance. The coefficients of the four models
in respect to the two SCCIs are almost always all either negative or positive.63

This fact demonstrates that the models generally come to similar conclusions
and their mutual contemplation raises the reliability. But it is also noteworthy
that the significance of the coefficients does sometimes differ.

5.4 Discussion of the Smart City Drivers

Lastly, in this section, the identified smart city drivers are discussed in detail
to point on policy implications. These interpretations of the smart city drivers
can solely be seen as a first attempt to determine their meaning. Further work
on this is required.

The implication of the models that a well–functioning economy is closely related
to the objective and subjective smartness of a city is not very much surprising
in respect to similar studies, and particularly when taking into consideration
that the dimension ’Economy & Governance’ is the most important in the
SCCIs. The straightforward implication for city officials, policymakers, and
important stakeholders to simply improve the state of the economy is probably
not so much helpful. However, it is obligatory to illustrate the influence of the
economic performance on the smartness performance, and ’GDP per Capita in
PPS’ also operates as an essential control variable.

Crucial are the results of the econometric models in consideration of the
population density. Cities are objectively and subjectively less smart when they

63The sole exceptions are the variables ’Population’ and the ’Dummy New Member State’
when the subjective SCCI is the dependent variable. However, the estimates are all close to
zero, and so there is not an inconsistency at hand.
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are denser, and that effect is significant. So if a city aims to become smart, it
should also try to curtail its density. In light of dense megacities which people
would in the first moment usually assign a smartness label to, this finding is not
intuitive. But as the smart city notion is defined here, this outcome is plausible.
It is way harder to provide the citizens with a well–functioning infrastructure,
a sound environment, and welcoming living conditions when there are a lot
of people in a limited area. The consequence is not alone that the number of
inhabitants should be contained. Population size alone has no significant effect
on neither the objective or the subjective smartness. Another way to deal with
this issue is to widen the urban areas, and that is actually what is happening
within the last decades (Fina & Siedentop, 2008, p. 489; Oueslati et al., 2015,
p. 1595). However, there is a trade–off between urban sprawl and population
density because urban sprawl comes solely at the sake of other challenges
(see European Environment Agency (2006)). For this reason, holistic visions
for cities are necessary. Without getting into much detail, Wheeler (2009,
pp. 872–872) makes interesting proposals, albeit that he primarily focusses on
sustainability. Amongst others, he suggests that balanced local communities
can help to tackle mobility challenges in contrast to metropolitan areas with low
density and discontiguous communities on the edges (Wheeler, 2009, p. 866).

Furthermore, there is an indication that cities in colder areas within the EU
are smarter than cities in warmer areas. The interpretation of this finding
is open to many gateways, but an attempt shall be made. Glaeser (2005,
pp. 2–4) argues for the USA that warmer cities are growing faster and that
aside from climate, education possibly predicts urban growth best while this is
especially true for cold–weather cities. Five indicators from the objective SCCI
and two indicators from the subjective SCCI which can be quite closely linked
to education are all positively associated with the variable ’Heating Degree
Days’ and negatively with ’Cooling Degree Days’ (see Table A29) and thus,
support the argument from Glaeser (2005) that colder areas face a need to offer
their populations education.64 On the downside, also in Europe, warmer cities

64Even though colder cities perform better in many indicators, it is remarkable that they
perform better in every indicator related to education.
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grow at least slightly faster65 and this growth leads to many challenges for
infrastructure, mobility, cohabitation, and sustainability which colder cities do
not face in this markedness. Due to this, it can be argued that it is currently
more difficult to make a city smart in a pleasant climate.

Another insight is that the size of the city in terms of inhabitants does not
influence the smartness, but it is relevant if the city is a capital or not. There
are several reasons why a capital city could be smarter objectively such as
agglomeration advantages, (see Subsection 4.2). Subjectively, diverse negative
externalities, in contrast, could contribute to a decline in the perceived smartness
(see also Subsection 4.2). Both issues can be tackled. Agglomeration advantages
could be restricted by means of suitable policies (e.g., the best universities
could be located to a place other than the capital), and capitals could try to
internalize at least some of the negative externalities they face. Note again that
there could be a bias in case that there are country–specific effects because, for
some countries, there is solely the capital city part of the sample.

Some evidence exists that a reason for worse performance in the objective
SCCI relates to a city being part of a new member state of the EU, but
there is no significant effect for the subjective SCCI. The worse objective
performance could be attributed to aspects which are broadly related to the
economic performance in case that these aspects are not fully accounted for by
the inclusion of ’GDP per Capita in PPS’ in the models. Moreover, historical
reasons and different development paths with respect to the Cold War could
still affect every dimension of the objective SCCI negatively.

Overall, the econometric analysis offers some intriguing results. However, this
can solely be seen as a first attempt, and more detailed analyses need to be
carried out in the future using the SCCIs. An idea is to apply the econometric
models on every dimension, following Neirotti et al. (2014). Furthermore, more

65The population growth from 2005 to 2015 correlates positively with the variable ’Cooling
Degree Days’ (0.0549) and negatively with the variable ’Heating Degree Days’ (–0.1391).
Data to calculate population growth are generally on a metropolitan level because, for
the year 2005, they are by far not complete on a city level. However, the metropolitan
approximations are appropriate because cities provide a lot of services for their surroundings.
Due to data availability on the metropolitan level, city data are used for Leipzig and Rostock,
and NUTS 3 data from 2007 instead of 2005 are used for Aalborg and Copenhagen.
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evaluation in respect to the choice of the best set of independent variables is
a step to take, and logit, as well as probit models, are potential supplements,
following Caragliu and Del Bo (2015), and Węziak–Białowolska (2016).
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6 Conclusion

Holistic smart city concepts in research are still at their beginning. Therefore,
the primary goal of this master thesis is to propose a persuasive conception of
a smart city framework to capture the state of 65 European cities concerning
their smartness. This is vis–à–vis growing cities a vital research topic. Such
a framework which relies on the construction of two Smart City Composite
Indicators (SCCIs) as introduced here helps to point on strengths and weak-
nesses of cities and can be seen as an essential benchmark for city planning
and policy actions. Furthermore, a distinguished objective and subjective
contemplation of the smart city performances is novel and yields notable find-
ings. This unique approach is of interest when considering that many other
researchers merge objective and subjective indicators whereas they strongly
rely on objective indicators simply because there are more indicators available
to do so. However, the researchers do generally not discuss that this could
be an issue and give no reason why it could be appropriate to include a lot
more objective indicators. Another important contribution of this thesis is the
establishment of econometric models for the identification of smart city drivers.
These models are a first attempt to explain the SCCIs, entail implications for
the city smart performances and their long–term developments plans, and are
open to a broader application on the SCCIs.

The literature review shows that the construction of composite indicators faces
several challenges and that it is a specific process which depends on the research
topic, sample size, and properties of available indicators. The SCCIs proposed
in this work tackle those challenges conveniently. After defining smart cities
holistically concerning four dimensions (’Infrastructure & Mobility’, ’Living &
Social Cohesion’, ’Economy & Governance’, ’Environment & Sustainability’), a
sample of 65 European cities takes into account 73 objective indicators, as well as
nineteen subjective indicators due to various criteria. Missing data are imputed
by predictive mean matching (PMM) as a tool for multiple imputations (MIs)
unless approximations by a previous year or a higher regional level are feasible.
As a next step, outliers are detected by the Shapiro–Wilk test in line with a
graphical assessment, and then winsorized while the IQR detects outlying values.
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The obligatory normalization procedure utilizes z–scores. The last two steps in
the construction phase are weighting and aggregation. Weights for the indicators
are obtained by a Principal Component Factor Analysis (PCFA) and weights
for the dimensions are obtained by an Analytic Hierarchy Process (AHP). The
simple additive aggregation implies a full trade–off among indicator values
and is therefore employed to finally calculate the two SCCIs. Furthermore,
uncertainty and sensitivity analyses show that the results for the SCCIs are
not much sensitive to model choices.

Taking a closer look at the results of the SCCIs displays that objective and
subjective SCCI are positively correlated with medium strength (0.51). Dimen-
sion DO has solely a weak correlation with the objective SCCI (0.24) while the
dimensions of the subjective SCCI are all highly correlated with the subjective
SCCI. Dimensions AO and DO are negatively correlated (–0.29), suggesting
objectively a slight trade–off between the two dimensions ’Infrastructure &
Mobility’ and ’Environment & Sustainability’. In contrast, dimensions BO and
CO go in hand (0.73). The dimensions of the subjective SCCI are all highly
correlated with each other (all above 0.8). Between the dimensions of the
objective and the subjective SCCI, it is remarkable that dimension AO is very
weakly correlated with each dimension of the subjective SCCI (all below |0.1|).

Furthermore, capital and non–capital cities, as well as the population size of
the cities, are differentiated and delineated concerning the two complete SCCIs.
The descriptive contemplation shows that capital and large cities perform better
objectively and that non–capital and small cities perform better subjectively.
Capitals may perform better objectively because they have agglomeration
advantages and get a disproportionate amount of resources. Besides, capital
cities in the sample are substantially larger than non–capital cities. Large cities
can more easily provide a skilled mix of employees and reach critical masses
for new digital solutions. However, residents of capitals distrust their local
administration and negative externalities due to diseconomies of scale could
influence the subjective performance.

This work also tries to identify variables which drive the cities’ smartness.
Therefore, multiple linear regression models are proposed in which the objective
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and the subjective SCCI, respectively, act as dependent variables. The idea
is that the same models explain both composite indicators to offer intriguing
interpretations. A first model employs an OLS estimator. Due to issues with
the OLS assumptions, three more models are submitted. A second model is
done with robust standard errors, a third model transforms the dependent and
independent variables logarithmically, and a fourth model uses an M–estimator
to conduct a robust regression. Despite the case of the logarithmic regression
where the coefficients represent elasticities, all other models are normalized
with z–scores so that the results indicate the contribution of the variables
to the explanation of the model. Independent variables in the models are
’Population’, ’GDP per Capita in PPS’, ’Population Density’, ’Cooling Degree
Days’, ’Heating Degree Days’, ’Dummy Capital’, and ’Dummy New Member
State’.

The results emphasize that economic strength mainly drives the objective and
subjective city smartness. This is not so much surprising and the straightforward
policy implications for enhancing the economic state of the city is probably
already in the minds of city officials, policymakers, and important stakeholders.
Moreover, ’Population Density’ is significantly and positively associated with
both SCCIs while ’Population’ is in no model significant. This result emphasizes
the need for city visions. Population density can be reduced by restriction of
the population or by urban sprawl. However, more essential than this simple
deduction is that cities try to become balanced. Instead of dense city centers,
smaller centers all around the cities could help to distribute the population in
the city in a more preferable way. There is also a slight indication that colder
cities are smarter according to both SCCIs. One reason may be that colder
regions put a focus on education as they need to make more efforts to keep their
population. Another reason may be that continuing population growth makes
it a lot harder for warmer cities to become smart. Capital cities are significantly
smarter when the objective SCCI is the dependent variable and non–capitals
are significantly smarter when the subjective SCCI is the dependent variable.
This could be the case on the one hand due to the mentioned prevalence of
agglomeration advantages and on the other hand due to diseconomies of scale.
New member states of the EU are less smart objectively while there are no
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distinct results subjectively. The worse objective performance even when taking
into account that the models control for ’GDP per Capita in PPS’ could still
reflect the different historical development paths of Eastern European cities.

The empirical evidence of this thesis suffers from some limitations. For the
objective SCCI, the main issue is that data availability is sometimes not optimal.
Many suitable indicators are from a different year than 2015, from a higher
regional level than the city level or not at hand at all. The subjective SCCI
relies on the European Urban Audit survey from 2015 which is a convenient
source but sticking to that source limits the sample size heavily. Besides, more
indicators could improve the quality of the subjective SCCI. Another issue is
that subjective indicators possibly measure a broader picture and not precisely
what the respective question asks for. This is always a concern with respect
to survey data and not exclusively a challenge here. Furthermore, it would be
an improvement if the indicators of both SCCIs better fit to each other. The
econometric analysis of the smartness composite indicators does probably not
select the best set of independent variables as the selection is theory–driven
and because convenient similar contributions to the literature are still rare.

This work entails a lot of viable research projects. The SCCIs can be used to
contemplate various aspects other than population size or capital status as it is
done here. Furthermore, the dimensions of the SCCIs can be investigated closer.
The construction of the SCCIs in time intervals is especially interesting because
it is then possible to monitor the smartness development of the cities over time.
Further research questions imply the if and the how of an appropriate merge
of objective and subjective smartness indicators. Undoubtedly, future research
must also try to tackle the limitations of this thesis, and interpretation of the
SCCIs results and the regression results need to be enhanced.
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Appendix

Table A1: Sample of European Cities and Their Classification Codes

# City Country NUTS 0 NUTS 2 Metropolitan Code City Code

1 Graz Austria AT AT22 AT002M AT002C1
2 Vienna Austria AT AT13 AT001MC AT001C1
3 Antwerp Belgium BE BE10 BE002M BE002C1
4 Brussels Belgium BE BE20 BE001MC BE001C1
5 Liège Belgium BE BE33 BE005M BE005C1
6 Burgas Bulgaria BG BG34 BG004M BG004C1
7 Sofia Bulgaria BG BG41 BG001MC BG001C1
8 Nicosia Cyprus CY CY00 CY001MC CY001C1
9 Ostrava Czech Republic CZ CZ08 CZ003M CZ003C1
10 Prague Czech Republic CZ CZ01 CZ001MC CZ001C1
11 Berlin Germany DE DE30 DE001MC DE001C1
12 Hamburg Germany DE DE60 DE002M DE002C1
13 Leipzig Germany DE DED5 DE008M DE008C1
14 Munich Germany DE DE21 DE003M DE003C1
15 Rostock Germany DE DE80 DE043M DE043C1
16 Aalborg Denmark DK DK05 DK004M DK004C2
17 Copenhagen Denmark DK DK01 DK001MC DK001C1
18 Tallinn Estionia EE EE00 EE001MC EE001C1
19 Athens Greece EL EL30 EL001MC EL001C1
20 Barcelona Spain ES ES51 ES002M ES002C1
21 Madrid Spain ES ES30 ES001MC ES001C1
22 Málaga Spain ES ES61 ES006M ES006C1
23 Oviedo Spain ES ES12 ES013M ES013C1
24 Helsinki Finland FI FI1B FI001MC FI001C2
25 Bordeaux France FR FR61 FR007M FR007C1
26 Lille France FR FR30 FR009M FR009C1
27 Marseille France FR FR82 FR203M FR203C1
28 Paris France FR FR10 FR001MC FR001C1
29 Rennes France FR FR52 FR013M FR013C2
30 Strasbourg France FR FR42 FR006M FR006C2
31 Zagreb Croatia HR HR04 HR001MC HR001C1
32 Budapest Hungary HU HU10 HU001MC HU001C1
33 Miskolc Hungary HU HU31 HU002M HU002C1
34 Dublin Ireland IE IE02 IE001MC IE001C1
35 Bologna Italy IT ITH5 IT009M IT009C1
36 Naples Italy IT ITF3 IT003M IT003C1
37 Palermo Italy IT ITG1 IT005M IT005C1
38 Rome Italy IT ITI4 IT001MC IT001C1
39 Turin Italy IT ITC1 IT004M IT004C1
40 Verona Italy IT ITH3 IT012M IT012C1
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41 Vilnius Lithuania LT LT00 LT001MC LT001C1
42 Luxembourg Luxembourg LU LU00 LU001MC LU001C1
43 Riga Latvia LV LV00 LV001MC LV001C1
44 Valletta Malta MT MT00 MT001MC MT001C1
45 Amsterdam Netherlands NL NL32 NL002MC NL002C1
46 Groningen Netherlands NL NL11 NL007M NL007C1
47 Rotterdam Netherlands NL NL33 NL003M NL003C1
48 Białystok Poland PL PL34 PL011M PL011C1
49 Gdańsk Poland PL PL63 PL006M PL006C1
50 Kraków Poland PL PL21 PL003M PL003C1
51 Warsaw Poland PL PL12 PL001MC PL001C1
52 Lisbon Portugal PT PT17 PT001MC PT001C1
53 Bucharest Romania RO RO32 RO001MC RO001C1
54 Cluj-Napoca Romania RO RO11 RO002M RO002C1
55 Malmö Sweden SE SE22 SE003M SE003C1
56 Stockholm Sweden SE SE11 SE001MC SE001C1
57 Ljubljana Slovenia SI SI0 SI001MC SI001C1
58 Bratislava Slovakia SK SK01 SK001MC SK001C1
59 Košice Slovakia SK SK04 SK002M SK002C1
60 Belfast United Kingdom UK UKN0 UK012M UK012C1
61 Cardiff United Kingdom UK UKL2 UK009M UK009C1
62 Glasgow United Kingdom UK UKM3 UK004M UK004C1
63 London United Kingdom UK UKI1 UK001MC UK001K2

UKI2
64 Manchester United Kingdom UK UK3 UK008M UK008C1
65 Newcastle United Kingdom UK UKC2 UK013M UK013C1

NUTS 2 Codes are from 2010.; Metropolitan codes for capitals end with a ’C’.
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Table A2: Indicators of the Objective SCCI
# Dimensions & Indicators Unit Year Level

A Infrastructure & Mobility

A1O Access to high-level passenger transport infrastructure Minute-equivalent 2012 City
A2O Accessibility to population by rail Number of persons 2011 City
A3O Accessibility of public transportation Score 2015 City
A4O Departures of public transportation Number of departures 2015 City
A5O Accessibility of motorways Index 2014 Regional
A6O Accessibility to passenger flights Number of flight access 2014 City
A7O Potential accessibility by roads Number of road access 2015 City
A8O Length of local roads Meter per inhabitant 2014 City
A9O Death by transport accident Rate 2015 Regional
A10O Network efficiency Score 2015 City
A11O Transportation and storage Local units per inhabitant 2015 Regional
A12O Construction Local units per inhabitant 2015 Regional
A13O Establishments Local units per inhabitant 2015 Regional
A14O Built-up areas Square meter per inhabitant 2011 City
A15O Old buildings Percentage 2015 City
A16O Next generation internet access Score 2016 City
A17O Sights & landmarks Number per 100,000 inhabitants 2016 City
A18O Green infrastructure Percentage 2010 - 2020 City
A19O Nature based recreation opportunities Score 2010 - 2020 City

B Living & Social Cohesion

B1O Infant mortality Percentage 2015 Regional
B2O Life expectancy Years 2015 Regional
B3O Medical doctors Number per 100,000 inhabitants 2015 Regional
B4O Hospital beds Number per 100,000 inhabitants 2015 Regional
B5O Educational attainment Percentage 2015 Regional
B6O Early leavers from education and training Percentage 2015 Regional
B7O Pre-primary education Percentage 2015 Regional
B8O Museums Number per 100,000 inhabitants 2016 City
B9O Rooms Number per inhabitant Various Regional
B10O Rent Index 2015 City
B11O Tourism Number per 1,000 inhabitants 2015 Regional
B12O Tourism intensity Ratio 2016 City
B13O Net migration Percentage 2005 - 2015 City
B14O Foreign-born population Percentage 2011 City
B15O People at risk of poverty or social exclusion Percentage 2015 Regional
B16O Difference female vs. male employment Percentage 2016 Regional
B17O Gini coefficient Scale 2015 National
B18O Total population change Percentage 2015 City

C Economy & Governance

C1O GDP in PPS Euro per inhabitant 2015 City
C2O Young people neither in employment nor education/training Percentage 2015 Regional
C3O Employment Percentage 2015 City
C4O Long-term unemployment Percentage 2015 Regional
C5O Patents Number per inhabitant 2012 City
C6O Research & development Percentage 2015 Regional
C7O Employment in high-technology sectors Percentage 2015 Regional
C8O Potential market size Index 2013 Regional
C9O Risk factors linked to globalisation Score 2016 Regional
C10O Regional resilience Score 2015 Regional
C11O Vulnerability to tourism Score 2016 Regional
C12O Ease of doing business Rank 2015 National
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C13O Government bond yields Percentage 2015 National
C14O Efficiency of the legal system - criminal cases Percentage 2015 National
C15O Efficiency of the legal system - civil and/or commercial cases Percentage 2015 National
C16O Interaction with public authorities via the internet Percentage 2015 Regional
C17O Public procurement - single bidder Percentage 2015 Regional
C18O Public procurement - open call for tender Percentage 2015 Regional
C19O Voter turnout at national elections Percentage 2015 Regional
C20O Information and communication Local units per inhabitant 2015 Regional
C21O Theft Per 100,000 inhabitants 2015 National
C22O Intentional homicide Per 100,000 inhabitants 2015 National

D Environment & Sustainability

D1O Green urban areas Percentage 2012 City
D2O Green urban areas in neighbourhood Percentage 2012 City
D3O Green metropolitan area Square meters per inhabitant 2014 City
D4O Artificial areas Square meters per inhabitant 2010 - 2020 City
D5O PM10 concentration Microgram per cubic meter 2010 - 2020 City
D6O NOx emissions 100 kg per year and inhabitant 2010 - 2020 Regional
D7O NO2 concentration Microgram per cubic meter 2010 - 2020 Regional
D8O Removal capacity of NO2 by vegetation Kilogram per hectare and year 2015 City
D9O Noise from roads Percentage 2012 - 2017 City
D10O Waste & water Local units per inhabitant 2015 Regional
D11O Waste generated 1,000 tonnes per inhabitant 2013 Regional
D12O Recycling of material 1,000 tonnes per inhabitant 2013 Regional
D13O Transport fuel taxes Percentage 2015 National
D14O Renewable sources Percentage 2015 Regional

106



Table A3: Indicators of the Subjective SCCI

# Dimensions & Indicators Questions and Statements

A Infrastructure & Mobility

A1S Public transportation How satisfied are you with public transport, for
example the bus, tram or metro in [CITY NAME]?

A2S Streets and buildings How satisfied are you with the state of the streets
and buildings in your neighborhood in [CITY NAME]?

A3S Public spaces How satisfied are you with public spaces such as
markets, squares, pedestrian areas in [CITY NAME]?

B Living & Social Cohesion

B1S Health care How satisfied are you with health care services,
doctors and hospitals in [CITY NAME]?

B2S Educational facilities How satisfied are you with schools and other
educational facilities in [CITY NAME]?

B3S Cultural facilities How satisfied are you with cultural facilities such as
concert halls, theatres, museums and libraries in [CITY NAME]?

B4S Affordable housing It is easy to find good housing at a reasonable
price in [CITY NAME].

B5S Acceptance of foreigners The presence of foreigners is good for [CITY NAME].
B6S Satisfaction to live in the city I am satisfied to live in [CITY NAME].

C Economy & Governance

C1S Job situation It is easy to find a job in [CITY NAME].
C2S Job opportunities How satisfied are you with your personal job situation?

C3S Administrative services The administrative services of [CITY NAME]
help people efficiently.

C4S Trust in public administration Generally speaking, the public administration of
[CITY NAME] can be trusted.

C5S Safety in city I feel safe in [CITY NAME].

D Environment & Sustainability

D1S Green spaces How satisfied are you with green spaces such as
parks and gardens in [CITY NAME]?

D2S Air quality How satisfied are you with the quality
of the air in [CITY NAME]?

D3S Noise How satisfied are you with the noise level in [CITY NAME]?
D4S Cleanliness How satisfied are you with the cleanliness in [CITY NAME]?

D5S Climate change [CITY NAME] is committed to fight against climate change
(e.g.: energy efficiency, green transport).

Some questions and statements were shortened for better clarity.
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Table A4: Little’s MCAR Test

Dimensions A B C D

χ2 distance 271.7813 292.5054 236.4106 151.7572
Df 218 212 208 134
Prob > χ2 0.0077 0.0002 0.0667 0.1400

Table A5: Doornik–Hansen Multivariate Normality Test

Dimensions A B C D

χ2 distance 146.289 52.998 340.588 70.627
Df 38 36 44 28
Prob > χ2 0.0000 0.0337 0.0000 0.0000
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Table A6: Shapiro–Wilk Normality Test Statistics of the Objective SCCI

Indicator Obs. W V z Prob > z Indicator Obs. W V z Prob > z

A1O 65 0.90817 5.323 3.621 0.00015 C1O 65 0.95056 2.866 2.28 0.01130
A2O 65 0.83645 9.481 4.871 0.00000 C2O 65 0.89052 6.346 4.001 0.00003
A3O 65 0.94666 3.092 2.445 0.00725 C3O 65 0.96949 1.769 1.235 0.10846
A4O 65 0.6943 17.721 6.225 0.00000 C4O 65 0.80913 11.065 5.205 0.00000
A5O 65 0.87652 7.158 4.262 0.00001 C5O 65 0.74885 14.559 5.799 0.00000
A6O 65 0.77452 13.071 5.566 0.00000 C6O 65 0.93032 4.039 3.023 0.00125
A7O 65 0.93413 3.818 2.901 0.00186 C7O 65 0.93193 3.946 2.973 0.00148
A8O 65 0.68524 18.246 6.288 0.00000 C8O 65 0.69491 17.686 6.221 0.00000
A9O 65 0.9586 2.4 1.896 0.02899 C9O 65 0.99050 0.551 -1.292 0.90174
A10O 65 0.20248 46.232 8.302 0.00000 C10O 65 0.99364 0.369 -2.161 0.98466
A11O 65 0.82391 10.208 5.031 0.00000 C11O 65 0.90903 5.273 3.600 0.00016
A12O 65 0.92133 4.56 3.286 0.00051 C12O 65 0.96117 2.251 1.757 0.03947
A13O 65 0.49961 29.007 7.292 0.00000 C13O 65 0.72204 16.113 6.019 0.00000
A14O 65 0.94599 3.131 2.472 0.00673 C14O 65 0.95160 2.806 2.234 0.01274
A15O 65 0.95861 2.399 1.895 0.02905 C15O 65 0.89642 6.004 3.881 0.00005
A16O 65 0.96122 2.248 1.754 0.03969 C16O 65 0.98413 0.92 -0.18 0.57154
A17O 65 0.86202 7.999 4.503 0.00000 C17O 65 0.91438 4.963 3.469 0.00026
A18O 65 0.92051 4.608 3.308 0.00047 C18O 65 0.92657 4.257 3.137 0.00085
A19O 65 0.85035 8.675 4.678 0.00000 C19O 65 0.97681 1.344 0.641 0.26083

C20O 65 0.83676 9.463 4.867 0.00000
B1O 65 0.82632 10.068 5.001 0.00000 C21O 65 0.89897 5.857 3.828 0.00006
B2O 65 0.91603 4.868 3.427 0.00031 C22O 65 0.64194 20.757 6.567 0.00000
B3O 65 0.88822 6.480 4.046 0.00003
B4O 65 0.93016 4.049 3.028 0.00123 D1O 65 0.90386 5.573 3.72 0.00010
B5O 65 0.92115 4.571 3.291 0.00050 D2O 65 0.81815 10.542 5.1 0.00000
B6O 65 0.92370 4.423 3.220 0.00064 D3O 65 0.91873 4.711 3.356 0.00039
B7O 65 0.98352 0.955 -0.099 0.53942 D4O 65 0.87418 7.294 4.303 0.00001
B8O 65 0.83410 9.617 4.902 0.00000 D5O 65 0.96704 1.911 1.402 0.08048
B9O 65 0.95322 2.712 2.160 0.01538 D6O 65 0.74092 15.019 5.867 0.00000
B10O 65 0.96028 2.303 1.806 0.03546 D7O 65 0.98445 0.901 -0.225 0.58903
B11O 65 0.87448 7.276 4.298 0.00001 D8O 65 0.90862 5.297 3.61 0.00015
B12O 65 0.70527 17.085 6.146 0.00000 D9O 65 0.97541 1.425 0.767 0.22142
B13O 65 0.99195 0.467 -1.651 0.95059 D10O 65 0.65666 19.903 6.477 0.00000
B14O 65 0.93941 3.512 2.720 0.00326 D11O 65 0.98768 0.714 -0.729 0.76688
B15O 65 0.85418 8.453 4.622 0.00000 D12O 65 0.92335 4.444 3.230 0.00062
B16O 65 0.93154 3.968 2.985 0.00142 D13O 65 0.93862 3.558 2.748 0.00299
B17O 65 0.98423 0.914 -0.195 0.57718 D14O 65 0.92582 4.300 3.159 0.00079
B18O 65 0.97707 1.329 0.616 0.26888

Indicators assumable from a normal distribution at a significance level of 0.01 are bold.
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Table A7: Skewness and Kurtosis Values of the Objective SCCI

Indicator Obs. Skewness Kurtosis Indicator Obs. Skewness Kurtosis

A1O 65 -0.9930759 0.38277766 C1O 65 0.91616664 1.36175752
A2O 65 1.39595303 1.50992062 C2O 65 -1.49344183 3.30340235
A3O 65 0.59548528 0.79431928 C3O 65 -0.108660734 0.549785766
A4O 65 2.62327497 7.53012523 C4O 65 -1.76999028 3.2134624
A5O 65 1.06388345 0.23201139 C5O 65 1.965330417 3.716351538
A6O 65 2.00036961 4.61913705 C6O 65 0.96116201 0.622739695
A7O 65 0.97060469 0.91294555 C7O 65 0.68708401 -0.50243705
A8O 65 3.48383607 17.2398988 C8O 65 2.840917882 10.23533884
A9O 65 -0.48453284 -0.48872024 C9O 65 -0.051539848 -0.622693073
A10O 65 -7.60657502 59.8939238 C10O 65 0.00997134 -0.1413438
A11O 65 2.25224694 8.89587112 C11O 65 -1.146571 0.95942534
A12O 65 1.19782126 2.76336464 C12O 65 -0.52200038 0.75789138
A13O 65 4.9699287 30.6647432 C13O 65 -2.945457471 13.36290938
A14O 65 0.97345545 1.49828294 C14O 65 0.026903137 -0.351678157
A15O 65 0.82563855 1.8395405 C15O 65 -0.93798135 1.294091062
A16O 65 0.5918007 -0.25040012 C16O 65 0.01360512 -0.55647759
A17O 65 1.60242314 3.11962994 C17O 65 -0.91269015 0.1164746
A18O 65 1.07311891 1.22738089 C18O 65 -0.82137009 -0.00277348
A19O 65 1.33264547 1.08102651 C19O 65 -0.206551568 -0.642339373

C20O 65 1.6241959 2.75842338
B1O 65 -1.94666838 5.03534779 C21O 65 -0.86246104 0.66300092
B2O 65 -0.86114613 -0.06265156 C22O 65 -3.300443078 13.79399311
B3O 65 1.581470786 3.741482936
B4O 65 0.696767855 0.986042559 D1O 65 1.15361874 1.10848122
B5O 65 -1.037173768 0.796089071 D2O 65 -1.99887174 5.34313052
B6O 65 -0.993335592 0.752131347 D3O 65 1.023819744 1.01200204
B7O 65 -0.238867518 0.282685371 D4O 65 1.66928364 7.80429915
B8O 65 1.593666995 2.355733575 D5O 65 -0.0832106 1.22817205
B9O 65 -0.414531864 -0.866129599 D6O 65 -1.86439391 2.81868244
B10O 65 -0.803255747 0.828653001 D7O 65 -0.10193783 0.10325148
B11O 65 1.466833895 2.47602276 D8O 65 0.72923508 -0.37719255
B12O 65 2.645396949 8.647907606 D9O 65 -0.326868092 -0.331579229
B13O 65 -0.005917916 -0.050462618 D10O 65 3.413924198 14.67297776
B14O 65 0.870212719 1.647183712 D11O 65 0.097486355 -0.472531263
B15O 65 -1.806575618 4.675814218 D12O 65 1.177514319 2.819834993
B16O 65 -1.021409936 1.431526607 D13O 65 0.84117417 0.20460954
B17O 65 -0.178592429 -0.684022811 D14O 65 0.806798569 -0.292017544
B18O 65 0.372240084 0.181954691
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Table A8: Shapiro–Wilk Normality Test Statistics of the Subjective SCCI

Indicator Obs. W V z Prob > z Indicator Obs. W V z Prob > z

A1S 65 0.92633 4.271 3.144 0.00083 C1S 65 0.96539 2.007 1.508 0.06577
A2S 65 0.95379 2.679 2.134 0.01643 C2S 65 0.96586 1.979 1.478 0.06967
A3S 65 0.899 5.855 3.827 0.00006 C3S 65 0.96025 2.304 1.808 0.03532
B1S 65 0.92914 4.108 3.06 0.00111 C4S 65 0.97718 1.323 0.606 0.27224
B2S 65 0.97752 1.303 0.574 0.28315 C5S 65 0.97387 1.515 0.899 0.18432
B3S 65 0.95482 2.619 2.085 0.01855 D1S 65 0.89992 5.802 3.807 0.00007
B4S 65 0.97731 1.315 0.594 0.27634 D2S 65 0.97735 1.313 0.59 0.27759
B5S 65 0.96556 1.996 1.497 0.06720 D3S 65 0.96457 2.054 1.558 0.05957
B6S 65 0.9315 3.971 2.986 0.00141 D4S 65 0.97338 1.543 0.939 0.17384

D5S 65 0.96013 2.311 1.814 0.03483

Indicators assumable from a normal distribution at a significance level of 0.01 are bold.

Table A9: Skewness and Kurtosis Values of the Subjective SCCI

Indicator Obs. Skewness Kurtosis Indicator Obs. Skewness Kurtosis

A1S 65 -1.183034948 2.13728946 C1S 65 -0.56362709 -0.13567343
A2S 65 -0.705252292 0.41789435 C2S 65 -0.41799865 -0.53705193
A3S 65 -1.205859154 1.22396156 C3S 65 -0.70642086 0.37674407
B1S 65 -0.37176093 -1.17336032 C4S 65 -0.47468362 -0.1765631
B2S 65 -0.32299069 -0.53693188 C5S 65 -0.43683256 -0.41998561
B3S 65 -0.75457753 0.59502432 D1S 65 1.03848526 -1.14391365
B4S 65 -0.26273541 -0.49823392 D2S 65 -0.76997387 -0.19416396
B5S 65 -0.45397299 -0.51565642 D3S 65 -0.80718333 -0.33387777
B6S 65 -0.87722398 0.34785626 D4S 65 0.2266839 -0.50720111

D5S 65 -0.37471363 -0.5499912
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Table A10: KMO of the Objective SCCI

Indicator KMO Indicator KMO Indicator KMO Indicator KMO

A1O 0.7450 B1O 0.4827 C1O 0.8171 D1O 0.5222
A2O 0.7622 B2O 0.6590 C2O 0.7308 D2O 0.3919
A3O 0.5822 B3O 0.4321 C3O 0.8997 D3O 0.7236
A4O 0.5633 B4O 0.5753 C4O 0.6785 D4O 0.4980
A5O 0.7311 B5O 0.4804 C5O 0.7100 D5O 0.5699
A6O 0.8496 B6O 0.4650 C6O 0.6822 D6O 0.3757
A7O 0.8888 B7O 0.2806 C7O 0.6729 D7O 0.5974
A8O 0.6629 B8O 0.5435 C8O 0.3666 D8O 0.6920
A9O 0.6276 B9O 0.6116 C9O 0.5388 D9O 0.3885
A10O 0.7252 B10O 0.5870 C10O 0.6878 D10O 0.5445
A11O 0.5707 B11O 0.7121 C11O 0.3626 D11O 0.4481
A12O 0.2718 B12O 0.6772 C12O 0.4711 D12O 0.5572
A13O 0.3866 B13O 0.6731 C13O 0.6280 D13O 0.7238
A14O 0.6060 B14O 0.7200 C14O 0.3133 D14O 0.3952
A15O 0.6658 B15O 0.7136 C15O 0.3421
A16O 0.7254 B16O 0.3474 C16O 0.6632
A17O 0.5008 B17O 0.6351 C17O 0.7249
A18O 0.6402 B18O 0.6548 C18O 0.5889
A19O 0.3524 C19O 0.2466

C20O 0.6952
C21O 0.6302
C22O 0.3263

Overall: 0.6771 Overall: 0.5824 Overall: 0.6271 Overall: 0.5425

Table A11: KMO of the Subjective SCCI

Indicator KMO Indicator KMO Indicator KMO Indicator KMO

A1S 0.8495 B1S 0.6117 C1S 0.7430 D1S 0.8574
A2S 0.6695 B2S 0.7217 C2S 0.6756 D2S 0.7837
A3S 0.6699 B3S 0.8580 C3S 0.7120 D3S 0.7691

B4S 0.3754 C4S 0.7266 D4S 0.8959
B5S 0.4914 C5S 0.8747 D5S 0.9212
B6S 0.6064

Overall: 0.7119 Overall: 0.6254 Overall: 0.7388 Overall: 0.8369
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Table A12: Eigenvalues and Variance of the PCFA of the Objective SCCI

Dimension A:

Factor Eigenvalue Difference Variance (%) Cumulative Variance (%)

1 5.58719 2.46551 0.2941 0.2941
2 3.12167 1.13403 0.1643 0.4584
3 1.98764 0.43584 0.1046 0.563
4 1.5518 0.18161 0.0817 0.6446
5 1.37018 0.32069 0.0721 0.7168
6 1.0495 0.18375 0.0552 0.772
7 0.86575 0.15529 0.0456 0.8176
8 0.71046 0.09317 0.0374 0.855
9 0.61728 0.07245 0.0325 0.8874
10 0.54483 0.19576 0.0287 0.9161
11 0.34907 0.02517 0.0184 0.9345
12 0.3239 0.06098 0.017 0.9515
13 0.26293 0.02922 0.0138 0.9654
14 0.23371 0.07814 0.0123 0.9777
15 0.15557 0.05335 0.0082 0.9859
16 0.10222 0.02159 0.0054 0.9912
17 0.08063 0.01109 0.0042 0.9955
18 0.06954 0.0534 0.0037 0.9992
19 0.01614 0.0008 1
Retained factors are bold.
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Dimension B:

Factor Eigenvalue Difference Variance (%) Cumulative Variance (%)

1 4.41778 1.25234 0.2454 0.2454
2 3.16543 1.47190 0.1759 0.4213
3 1.69353 0.34654 0.0941 0.5154
4 1.34699 0.04997 0.0748 0.5902
5 1.29703 0.20706 0.0721 0.6623
6 1.08997 0.10200 0.0606 0.7228
7 0.98796 0.17573 0.0549 0.7777
8 0.81223 0.15089 0.0451 0.8228
9 0.66135 0.09213 0.0367 0.8596
10 0.56922 0.08236 0.0316 0.8912
11 0.48686 0.07069 0.0270 0.9182
12 0.41617 0.11206 0.0231 0.9414
13 0.30411 0.09365 0.0169 0.9583
14 0.21045 0.01995 0.0117 0.9699
15 0.19050 0.02822 0.0106 0.9805
16 0.16228 0.03765 0.0090 0.9895
17 0.12463 0.06113 0.0069 0.9965
18 0.06350 0.0035 1
Retained factors are bold.
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Dimension C:

Factor Eigenvalue Difference Variance (%) Cumulative Variance (%)

1 6.93415 4.57745 0.3152 0.3152
2 2.35670 0.27626 0.1071 0.4223
3 2.08044 0.26042 0.0946 0.5169
4 1.82003 0.24519 0.0827 0.5996
5 1.57484 0.30329 0.0716 0.6712
6 1.27155 0.30151 0.0578 0.7290
7 0.97004 0.07263 0.0441 0.7731
8 0.89741 0.22766 0.0408 0.8139
9 0.66975 0.12637 0.0304 0.8443
10 0.54338 0.00683 0.0247 0.8690
11 0.53655 0.08283 0.0244 0.8934
12 0.45372 0.02862 0.0206 0.9140
13 0.42510 0.10538 0.0193 0.9333
14 0.31972 0.02605 0.0145 0.9479
15 0.29367 0.08831 0.0133 0.9612
16 0.20535 0.01892 0.0093 0.9706
17 0.18643 0.02491 0.0085 0.9790
18 0.16152 0.04908 0.0073 0.9864
19 0.11245 0.03891 0.0051 0.9915
20 0.07353 0.00307 0.0033 0.9948
21 0.07046 0.02722 0.0032 0.998
22 0.04323 0.0020 1
Retained factors are bold.
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Dimension D:

Factor Eigenvalue Difference Variance (%) Cumulative Variance (%)

1 2.88793 0.63591 0.2063 0.2063
2 2.25202 0.55820 0.1609 0.3671
3 1.69382 0.15909 0.1210 0.4881
4 1.53473 0.29446 0.1096 0.5977
5 1.24027 0.23141 0.0886 0.6863
6 1.00886 0.17064 0.0721 0.7584
7 0.83822 0.25732 0.0599 0.8183
8 0.58091 0.04325 0.0415 0.8598
9 0.53765 0.13857 0.0384 0.8982
10 0.39908 0.06436 0.0285 0.9267
11 0.33472 0.02744 0.0239 0.9506
12 0.30728 0.08879 0.0219 0.9725
13 0.21849 0.05246 0.0156 0.9881
14 0.16603 0.0119 1
Retained factors are bold.
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Table A13: Eigenvalues and Variance of the PCFA of the Subjective SCCI

Dimension A

Factor Eigenvalue Difference Variance (%) Cumulative Variance (%)

1 2.41233 2.01032 0.8041 0.8041
2 0.40201 0.21635 0.134 0.9381
3 0.18566 0.0619 1
Retained factors are bold.

Dimension B:

Factor Eigenvalue Difference Variance (%) Cumulative Variance (%)

1 2.88479 1.69409 0.4808 0.4808
2 1.1907 0.15461 0.1985 0.6792
3 1.03609 0.58627 0.1727 0.8519
4 0.44982 0.15267 0.075 0.9269
5 0.29715 0.15571 0.0495 0.9764
6 0.14144 0.0236 1
Retained factors are bold.

Dimension C:

Factor Eigenvalue Difference Variance (%) Cumulative Variance (%)

1 3.48375 2.70294 0.6968 0.6968
2 0.78081 0.27782 0.1562 0.8529
3 0.50299 0.35543 0.1006 0.9535
4 0.14756 0.06268 0.0295 0.983
5 0.08488 0.017 1
Retained factors are bold.
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Dimension D:

Factor Eigenvalue Difference Variance (%) Cumulative Variance (%)

1 3.85574 3.35668 0.7711 0.7711
2 0.49906 0.17946 0.0998 0.871
3 0.3196 0.09414 0.0639 0.9349
4 0.22545 0.1253 0.0451 0.98
5 0.10015 0.02 1
Retained factors are bold.
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Table A14: Factor Loadings and Explained Variance of the Objective SCCI

Dimension A:

Indicator Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

A1O 0.459 0.3529 0.5341 0.0798 0.2358 0.1292
A2O 0.9388 0.0326 -0.0018 -0.032 0.171 -0.0515
A3O 0.0373 0.5906 0.3485 0.1436 0.5209 0.023
A4O -0.0295 0.7987 0.1736 0.0941 0.2343 -0.0793
A5O 0.929 0.1018 0.0833 0.0521 0.1632 -0.059
A6O 0.7161 0.2388 0.3231 0.209 0.1628 -0.1077
A7O 0.9415 0.1359 0.0407 0.0439 0.1047 0.0244
A8O -0.2449 -0.8557 0.1451 0.1291 0.0273 0.1694
A9O 0.3255 0.0285 0.7098 -0.1152 0.3459 -0.0787
A10O 0.7867 -0.0811 0.0125 -0.066 -0.1377 0.2924
A11O -0.2596 0.3298 -0.0915 0.6895 -0.2022 0.169
A12O 0.0888 -0.2292 0.0052 0.8328 -0.0447 -0.0878
A13O 0.0459 -0.1476 -0.1866 -0.1031 -0.1201 0.8493
A14O 0.0249 -0.8251 -0.0596 0.0016 0.2578 0.0967
A15O -0.6447 0.1299 -0.1636 0.294 -0.0385 0.262
A16O 0.1659 0.4963 0.0187 0.5331 0.1654 0.0522
A17O -0.1214 -0.1675 0.2173 0.352 0.3877 0.6895
A18O -0.2878 -0.0044 0.0797 0.1484 -0.7891 0.0014
A19O -0.0194 0.0276 0.7958 -0.0144 -0.3721 -0.0874

Explained Variance 4.7605 3.0937 1.8356 1.8158 1.6786 1.4836
% of Total Variance 32.46 21.09 12.51 12.38 11.44 10.11
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Dimension B:

Indicator Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

B1O -0.0351 0.5052 0.0113 0.2096 0.6049 0.1541
B2O -0.5271 0.571 0.3103 0.1435 0.2732 -0.0853
B3O 0.213 0.0131 0.2324 0.4318 0.0621 -0.4933
B4O 0.7109 0.0242 -0.0226 0.0819 -0.404 -0.1154
B5O 0.8471 0.1379 0.0214 0.1476 -0.1449 0.1385
B6O 0.6479 0.3631 0.0147 0.1113 0.2489 0.0002
B7O 0.1157 0.1233 0.0246 0.1007 -0.0199 0.8918
B8O -0.027 -0.0138 0.3879 -0.0315 0.7947 -0.174
B9O -0.6612 0.3683 0.1577 0.3976 0.0175 -0.2182
B10O 0.7431 -0.0084 -0.3279 0.0969 0.2275 -0.134
B11O -0.188 0.222 0.7885 -0.0543 0.0919 -0.0727
B12O -0.0294 -0.024 0.878 -0.086 0.2133 -0.098
B13O -0.218 0.4799 0.3229 0.1902 0.0232 -0.0432
B14O -0.1334 0.0442 0.6461 0.4537 0.1862 0.2069
B15O 0.1183 0.8341 0.0286 0.0449 0.1419 0.0594
B16O 0.1447 0.0627 -0.0482 0.8889 0.008 0.0373
B17O 0.2095 0.7732 0.0396 -0.111 -0.0658 0.1121
B18O 0.0793 0.5106 0.5816 0.242 -0.2956 -0.0101

Explained Variance 3.1573 2.7243 2.6924 1.5859 1.5756 1.2752
% of Total Variance 24.27 20.94 20.69 12.19 12.11 9.80
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Dimension C:

Indicator Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

C1O 0.6849 0.4518 0.2199 0.1351 0.137 0.0619
C2O 0.3179 0.3796 0.7368 0.0586 -0.113 0.1091
C3O 0.5447 0.0574 0.6061 0.0879 0.0474 0.0407
C4O 0.1459 0.1178 0.8264 -0.1242 0.0731 -0.0917
C5O 0.2286 0.724 0.1779 -0.049 0.152 0.0516
C6O 0.7245 0.4157 0.2002 0.2624 0.1229 0.0578
C7O 0.8591 0.0778 0.1576 -0.0145 0.0683 -0.0311
C8O -0.1925 0.0836 0.4343 0.2205 0.6612 -0.1693
C9O 0.1935 0.3147 0.5086 0.1679 -0.1511 0.3287
C10O 0.5511 0.0121 0.6597 -0.162 0.2 -0.1164
C11O 0.2212 -0.1285 0.0389 -0.189 0.6118 -0.0614
C12O -0.0467 0.2895 0.5796 0.1302 -0.058 -0.3445
C13O 0.1409 0.8243 0.158 -0.0852 0.111 0.0873
C14O -0.0434 -0.332 0.0277 0.8333 0.0809 -0.2593
C15O -0.073 -0.0668 -0.0275 0.0541 0.0777 0.8902
C16O 0.318 0.7383 0.2038 -0.0097 -0.0943 -0.1285
C17O -0.0086 0.5582 0.1616 0.0577 0.1287 -0.5392
C18O -0.7107 -0.0398 0.1084 0.3704 -0.1295 -0.0333
C19O 0.082 0.1861 -0.2376 -0.0539 0.7796 0.2161
C20O 0.7874 0.1677 0.3642 -0.0248 -0.1977 -0.1224
C21O 0.0059 -0.8308 -0.0566 0.0398 0.1437 0.1885
C22O 0.0195 0.1309 -0.0268 0.8165 -0.2017 0.2956

Explained Variance 3.8932 3.6975 3.2569 1.789 1.735 1.6657
% of Total Variance 24.28 23.06 20.31 11.16 10.82 10.39
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Dimension D:

Indicator Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

D1O -0.148 0.2426 0.259 0.778 0.0843 0.1339
D2O 0.0901 0.0841 -0.5016 0.6948 -0.0316 0.0001
D3O -0.342 0.7411 0.1605 0.1969 -0.0553 -0.0429
D4O 0.3696 0.6763 0.2475 0.1872 -0.385 -0.1294
D5O 0.2784 -0.3525 0.2733 0.6854 -0.0591 0.0738
D6O -0.3515 0.0285 -0.0802 0.0806 0.8148 -0.2049
D7O -0.0533 0.2429 0.8522 0.0821 -0.1077 -0.039
D8O 0.3507 -0.0571 -0.7108 -0.1182 -0.0553 0.175
D9O 0.4531 0.0644 0.0449 -0.0513 0.7315 0.2429
D10O 0.0821 0.7576 0.0547 -0.1397 0.2378 0.0782
D11O -0.4761 0.201 0.0441 0.0928 0.1217 0.7163
D12O 0.8032 0.2104 -0.1695 0.2153 0.0212 -0.1889
D13O -0.7767 0.1702 0.1968 0.0431 0.0658 -0.0236
D14O -0.0857 0.11 0.1743 -0.0799 0.0673 -0.7708

Explained Variance 2.3049 1.9637 1.8231 1.7442 1.4572 1.3247
% of Total Variance 21.71 18.49 17.17 16.43 13.72 12.48
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Table A15: Factor Loadings and Explained Variance of the Subjective SCCI

Dimension A:

Indicator Factor 1 Factor 2

A1S 0.3667 0.9303
A2S 0.8857 0.35
A3S 0.8865 0.3485

Explained Variance 1.7048 1.1094
% of Total Variance 60.58 39.42

Dimension B:

Indicator Factor 1 Factor 2 Factor 3

B1S 0.9009 0.0002 -0.1787
B2S 0.8681 0.2493 0.1171
B3S 0.5384 0.488 -0.37
B4S -0.0507 -0.0698 0.9694
B5S -0.0399 0.9551 -0.1274
B6S 0.4157 0.8496 0.0414

Explained Variance 2.0321 1.9392 1.1402
% of Total Variance 39.75 37.94 0.2231

Dimension C:

Indicator Factor 1 Factor 2 Factor 3

C1S 0.4496 0.7478 0.3764
C2S 0.1765 0.9559 0.1183
C3S 0.9269 0.2119 0.2378
C4S 0.881 0.2987 0.2928
C5S 0.3201 0.2198 0.9183

Explained Variance 1.9711 1.6554 1.1412
% of Total Variance 41.34 34.72 23.94
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Dimension D:

Indicator Factor 1

C1S 0.8986
C2S 0.8535
C3S 0.9366
C4S 0.8844
C5S 0.8126

Explained Variance 3.8556
% of Total Variance 100

Table A16: Intensities of Importance and CR of the SCCIs Dimensions

Criteria
Criteria A B C D

A 1.00 0.50 0.50 2.00
B 2.00 1.00 0.50 2.00
C 2.00 2.00 1.00 2.00
D 0.50 0.50 0.50 1.00

CR 0.045
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Table A17: Results of the Objective SCCI – Dimensions

Dimension A:

# City Score # City Score

1 Paris 0.8457 34 Warsaw 0.0244
2 Amsterdam 0.6777 35 Nicosia 0.0206
3 Rotterdam 0.5985 36 Helsinki 0.0154
4 Bratislava 0.5586 37 Newcastle -0.0596
5 Brussels 0.5198 38 Turin -0.0742
6 Verona 0.5121 39 Oviedo -0.1333
7 Antwerp 0.4642 40 Rostock -0.134
8 Lisbon 0.4049 41 Bordeaux -0.1434
9 Dublin 0.3684 42 Rennes -0.1617
10 London 0.367 43 Kraków -0.1634
11 Barcelona 0.3495 44 Belfast -0.172
12 Leipzig 0.325 45 Aalborg -0.176
13 Madrid 0.2745 46 Gdańsk -0.1872
14 Ljubljana 0.273 47 Glasgow -0.2291
15 Rome 0.2521 48 Málaga -0.2375
16 Liège 0.2387 49 Groningen -0.2452
17 Marseille 0.2231 50 Budapest -0.2562
18 Bologna 0.2167 51 Zagreb -0.2691
19 Luxembourg 0.2073 52 Ostrava -0.271
20 Naples 0.1919 53 Malmö -0.2925
21 Prague 0.1881 54 Valletta -0.3404
22 Munich 0.1624 55 Vilnius -0.3464
23 Hamburg 0.1582 56 Tallinn -0.3848
24 Berlin 0.1548 57 Miskolc -0.4021
25 Manchester 0.1246 58 Košice -0.4436
26 Copenhagen 0.1219 59 Sofia -0.4786
27 Strasbourg 0.1212 60 Riga -0.5225
28 Vienna 0.1172 61 Białystok -0.6294
29 Stockholm 0.1127 62 Palermo -0.6514
30 Athens 0.1106 63 Burgas -0.6921
31 Lille 0.105 64 Bucharest -0.7128
32 Cardiff 0.0796 65 Cluj-Napoca -0.7404
33 Graz 0.0646
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Dimension B:

# City Score # City Score

1 Prague 0.8584 34 Barcelona -0.0367
2 Stockholm 0.7427 35 Groningen -0.0398
3 Luxembourg 0.6442 36 Madrid -0.043
4 Munich 0.6121 37 Budapest -0.0551
5 Vienna 0.5382 38 Kraków -0.107
6 Rostock 0.5251 39 Valletta -0.1412
7 Bratislava 0.5231 40 Athens -0.1813
8 Graz 0.5075 41 Lille -0.2186
9 Amsterdam 0.5057 42 Oviedo -0.2289
10 Ljubljana 0.4929 43 Warsaw -0.2295
11 Helsinki 0.4629 44 Newcastle -0.2315
12 Bordeaux 0.45 45 Vilnius -0.2324
13 Nicosia 0.4105 46 Málaga -0.2432
14 Copenhagen 0.3815 47 Ostrava -0.2773
15 Malmö 0.3798 48 Riga -0.2876
16 Hamburg 0.3776 49 Turin -0.291
17 Brussels 0.3531 50 Zagreb -0.2957
18 Paris 0.3489 51 Cardiff -0.3044
19 Antwerp 0.3278 52 Rome -0.318
20 Berlin 0.3219 53 Sofia -0.3382
21 Dublin 0.2339 54 Manchester -0.3669
22 Rennes 0.2314 55 Glasgow -0.3807
23 Verona 0.2084 56 Gdańsk -0.4206
24 Aalborg 0.2036 57 Belfast -0.447
25 Marseille 0.1794 58 Bucharest -0.4879
26 London 0.1767 59 Košice -0.5499
27 Leipzig 0.1637 60 Burgas -0.5671
28 Strasbourg 0.1492 61 Białystok -0.6072
29 Tallinn 0.1158 62 Miskolc -0.8946
30 Bologna 0.0889 63 Naples -0.9209
31 Lisbon 0.0855 64 Cluj-Napoca -0.9221
32 Rotterdam 0.0112 65 Palermo -0.9261
33 Liège -0.0198

126



Dimension C:

# City Score # City Score

1 Copenhagen 0.7962 34 Tallinn -0.0559
2 Munich 0.7956 35 Manchester -0.0585
3 Graz 0.7852 36 Sofia -0.0588
4 Vienna 0.7788 37 Ljubljana -0.0616
5 Helsinki 0.7561 38 Bologna -0.1116
6 Luxembourg 0.703 39 Strasbourg -0.1353
7 Stockholm 0.6234 40 Brussels -0.1399
8 Prague 0.6202 41 Barcelona -0.1527
9 Bratislava 0.5676 42 Valletta -0.1661
10 Hamburg 0.5127 43 Belfast -0.177
11 Amsterdam 0.5119 44 Białystok -0.1788
12 Paris 0.4391 45 Rennes -0.1798
13 Warsaw 0.4192 46 Bordeaux -0.1825
14 Berlin 0.3726 47 Gdańsk -0.1853
15 Groningen 0.3586 48 Bucharest -0.2045
16 Dublin 0.3529 49 Rome -0.252
17 London 0.3035 50 Marseille -0.2792
18 Leipzig 0.2442 51 Athens -0.3601
19 Antwerp 0.1861 52 Lille -0.3609
20 Malmö 0.119 53 Turin -0.3819
21 Glasgow 0.0942 54 Oviedo -0.3939
22 Cardiff 0.0847 55 Verona -0.4114
23 Vilnius 0.0841 56 Zagreb -0.4303
24 Madrid 0.0799 57 Košice -0.4317
25 Ostrava 0.0781 58 Málaga -0.4557
26 Rostock 0.0393 59 Cluj-Napoca -0.4902
27 Riga 0.0377 60 Liège -0.5014
28 Aalborg 0.0319 61 Nicosia -0.5224
29 Rotterdam 0.0297 62 Miskolc -0.7187
30 Kraków 0.0216 63 Naples -0.8583
31 Lisbon 0.0092 64 Burgas -0.8951
32 Budapest -0.0324 65 Palermo -0.9567
33 Newcastle -0.0554
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Dimension D:

# City Score # City Score

1 Miskolc 0.7461 34 Rennes -0.0134
2 Ljubljana 0.6819 35 Oviedo -0.0153
3 Rostock 0.6078 36 Verona -0.0396
4 Vilnius 0.5292 37 Groningen -0.0723
5 Leipzig 0.511 38 Paris -0.0762
6 Bordeaux 0.5024 39 Malmö -0.1238
7 Stockholm 0.5006 40 Burgas -0.1265
8 Tallinn 0.4402 41 Vienna -0.1364
9 Zagreb 0.3582 42 Copenhagen -0.1408
10 Graz 0.3134 43 Palermo -0.1569
11 Riga 0.3115 44 Nicosia -0.1784
12 Košice 0.3085 45 Newcastle -0.1826
13 Berlin 0.3027 46 London -0.1916
14 Hamburg 0.2855 47 Liège -0.2111
15 Gdańsk 0.2637 48 Madrid -0.2608
16 Prague 0.2511 49 Valletta -0.27
17 Helsinki 0.2396 50 Lille -0.2714
18 Sofia 0.2131 51 Brussels -0.2804
19 Belfast 0.2014 52 Rome -0.2809
20 Białystok 0.1947 53 Antwerp -0.2933
21 Cluj-Napoca 0.1723 54 Málaga -0.3171
22 Warsaw 0.1667 55 Amsterdam -0.3233
23 Bratislava 0.1323 56 Dublin -0.3286
24 Cardiff 0.1305 57 Manchester -0.331
25 Aalborg 0.1282 58 Rotterdam -0.399
26 Budapest 0.1228 59 Athens -0.4165
27 Munich 0.1175 60 Bologna -0.4756
28 Luxembourg 0.1094 61 Lisbon -0.4975
29 Glasgow 0.0727 62 Turin -0.5123
30 Ostrava 0.0493 63 Bucharest -0.5226
31 Strasbourg 0.011 64 Naples -0.5552
32 Marseille 0.0053 65 Barcelona -0.9811
33 Kraków 0.0012
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Table A18: Results of the Subjective SCCI – Dimensions

Dimension A:

# City Score # City Score

1 Vienna 1.6461 34 Gdańsk 0.1131
2 Munich 1.151 35 Zagreb 0.1118
3 Rotterdam 1.0464 36 Dublin 0.0594
4 Aalborg 1.036 37 Warsaw -0.0081
5 Graz 0.9928 38 Tallinn -0.0421
6 Rostock 0.9902 39 Barcelona -0.0706
7 Helsinki 0.988 40 Lille -0.0728
8 Luxembourg 0.975 41 Paris -0.1811
9 Groningen 0.9661 42 Budapest -0.205
10 Białystok 0.9528 43 Vilnius -0.264
11 Malmö 0.8768 44 Cluj-Napoca -0.2787
12 Rennes 0.864 45 Málaga -0.2871
13 Stockholm 0.8154 46 Miskolc -0.2983
14 Strasbourg 0.7523 47 Brussels -0.3188
15 Bordeaux 0.7328 48 Bologna -0.4411
16 Ljubljana 0.6845 49 Turin -0.4506
17 Burgas 0.6103 50 Riga -0.4842
18 Cardiff 0.5888 51 Košice -0.6548
19 Hamburg 0.5796 52 Madrid -0.7206
20 Copenhagen 0.5777 53 Verona -0.7512
21 Amsterdam 0.5669 54 Liège -0.8597
22 London 0.5606 55 Marseille -1.0991
23 Leipzig 0.5522 56 Bratislava -1.129
24 Manchester 0.4851 57 Lisbon -1.2636
25 Oviedo 0.4424 58 Sofia -1.3173
26 Prague 0.4395 59 Valletta -1.3374
27 Belfast 0.4336 60 Athens -1.3672
28 Newcastle 0.4296 61 Nicosia -1.4047
29 Glasgow 0.3994 62 Bucharest -1.6995
30 Ostrava 0.3478 63 Naples -2.1396
31 Antwerp 0.3105 64 Palermo -2.1486
32 Kraków 0.2617 65 Rome -2.1983
33 Berlin 0.1527
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Dimension B:

# City Score # City Score

1 Aalborg 1.3086 34 Dublin 0.1141
2 Groningen 1.1687 35 Prague 0.1138
3 Belfast 0.9254 36 Malmö 0.1123
4 Glasgow 0.8223 37 Strasbourg 0.107
5 Graz 0.768 38 Tallinn 0.0684
6 Cardiff 0.7452 39 Berlin -0.069
7 Newcastle 0.7092 40 London -0.094
8 Leipzig 0.6471 41 Verona -0.1471
9 Vienna 0.5505 42 Košice -0.1491
10 Rotterdam 0.4599 43 Barcelona -0.2185
11 Cluj-Napoca 0.4446 44 Lille -0.2959
12 Copenhagen 0.4391 45 Valletta -0.3019
13 Oviedo 0.4359 46 Budapest -0.3319
14 Málaga 0.4301 47 Paris -0.3692
15 Zagreb 0.3922 48 Liège -0.4423
16 Munich 0.382 49 Madrid -0.4553
17 Manchester 0.3747 50 Nicosia -0.457
18 Amsterdam 0.3718 51 Warsaw -0.4807
19 Luxembourg 0.3593 52 Brussels -0.4844
20 Antwerp 0.3392 53 Bologna -0.492
21 Hamburg 0.324 54 Turin -0.5404
22 Rennes 0.3138 55 Miskolc -0.5523
23 Ljubljana 0.3077 56 Lisbon -0.5922
24 Stockholm 0.3049 57 Bucharest -0.6291
25 Burgas 0.2918 58 Riga -0.6503
26 Vilnius 0.2704 59 Marseille -0.772
27 Gdańsk 0.2274 60 Bratislava -0.773
28 Helsinki 0.2187 61 Sofia -0.8757
29 Rostock 0.1882 62 Naples -1.1635
30 Ostrava 0.1876 63 Rome -1.42
31 Bordeaux 0.1795 64 Palermo -1.4628
32 Białystok 0.1719 65 Athens -1.4714
33 Kraków 0.1158
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Dimension C:

# City Score # City Score

1 Aalborg 1.591 34 Paris -0.0058
2 Graz 1.3264 35 Oviedo -0.0235
3 Munich 1.2721 36 Riga -0.0332
4 Luxembourg 1.2146 37 Brussels -0.1167
5 Copenhagen 1.1841 38 Białystok -0.16
6 Stockholm 1.0357 39 Kraków -0.1772
7 Helsinki 0.9386 40 Lille -0.1968
8 Cardiff 0.926 41 Berlin -0.2024
9 Vienna 0.8784 42 Dublin -0.2062
10 Cluj-Napoca 0.8151 43 Warsaw -0.269
11 Hamburg 0.7724 44 Liège -0.2952
12 Antwerp 0.7579 45 Verona -0.3356
13 Belfast 0.721 46 Ostrava -0.3711
14 Newcastle 0.7097 47 Budapest -0.3713
15 Valletta 0.696 48 Bratislava -0.5199
16 Glasgow 0.6527 49 Barcelona -0.5545
17 Malmö 0.6505 50 Málaga -0.5662
18 Groningen 0.6395 51 Košice -0.6181
19 Rennes 0.6026 52 Nicosia -0.6193
20 Manchester 0.5817 53 Bologna -0.6757
21 London 0.5763 54 Zagreb -0.6981
22 Rostock 0.5092 55 Bucharest -0.7406
23 Bordeaux 0.4313 56 Marseille -0.7525
24 Leipzig 0.3927 57 Sofia -0.8559
25 Tallinn 0.3329 58 Miskolc -0.9094
26 Amsterdam 0.3044 59 Lisbon -1.0399
27 Rotterdam 0.2986 60 Madrid -1.146
28 Strasbourg 0.2928 61 Turin -1.3559
29 Ljubljana 0.1464 62 Rome -1.8125
30 Burgas 0.0951 63 Naples -1.9346
31 Gdańsk 0.0875 64 Athens -1.9375
32 Vilnius 0.0742 65 Palermo -2.0122
33 Prague 0.0055
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Dimension D:

# City Score # City Score

1 Aalborg 1.1933 34 Riga 0.0899
2 Vienna 1.181 35 Lille -0.0618
3 Malmö 1.1556 36 Berlin -0.1018
4 Białystok 1.1277 37 Burgas -0.1127
5 Luxembourg 1.1059 38 Verona -0.156
6 Groningen 1.0688 39 Ostrava -0.2231
7 Newcastle 1.0652 40 Miskolc -0.231
8 Munich 1.0531 41 Cluj-Napoca -0.242
9 Cardiff 1.0435 42 Košice -0.2707
10 Rostock 1.0393 43 Turin -0.2991
11 Belfast 0.9403 44 Bologna -0.3137
12 Ljubljana 0.8934 45 Prague -0.3864
13 Rennes 0.8553 46 Warsaw -0.3936
14 Glasgow 0.8424 47 Nicosia -0.4343
15 Stockholm 0.8278 48 Liège -0.4768
16 Helsinki 0.7552 49 Brussels -0.5749
17 Oviedo 0.7335 50 Málaga -0.6043
18 Leipzig 0.6796 51 Budapest -0.6566
19 Bordeaux 0.6584 52 Kraków -0.7184
20 Manchester 0.6411 53 Barcelona -0.7891
21 Hamburg 0.6409 54 Paris -0.8403
22 Vilnius 0.5719 55 Lisbon -0.9332
23 Copenhagen 0.538 56 Bratislava -1.0458
24 Tallinn 0.5205 57 Valletta -1.0615
25 Dublin 0.4305 58 Marseille -1.0814
26 Graz 0.4258 59 Madrid -1.3443
27 London 0.3765 60 Sofia -1.4174
28 Strasbourg 0.3579 61 Bucharest -1.5014
29 Antwerp 0.2851 62 Rome -1.5246
30 Amsterdam 0.2341 63 Naples -1.7743
31 Rotterdam 0.2189 64 Palermo -2.1195
32 Gdańsk 0.1872 65 Athens -2.1527
33 Zagreb 0.1048
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Table A19: Results of the UA and SA of the Objective SCCI
Scenario

City 1 2 3 4 5 6 7 8 9 10 11 12 Min Max Ø

Prague 1 2 2 2 1 4 1 2 3 4 2 4 1 4 2.33
Stockholm 2 3 1 1 5 1 2 1 1 2 1 2 1 5 1.83
Munich 3 1 4 4 4 2 6 3 2 1 5 1 1 6 3
Luxembourg 4 5 6 6 6 11 5 11 5 5 6 5 4 11 6.25
Graz 5 4 5 5 2 5 4 4 4 3 4 3 2 5 4
Bratislava 6 6 3 3 3 7 3 5 6 6 3 6 3 7 4.75
Helsinki 7 8 8 9 8 3 9 7 7 8 8 8 3 9 7.5
Vienna 8 7 12 11 7 6 12 12 8 7 12 7 6 12 9.08
Amsterdam 9 9 10 8 10 12 11 13 10 9 10 9 8 13 10
Paris 10 12 7 12 9 10 7 9 11 12 7 12 7 12 9.83
Copenhagen 11 11 14 15 11 9 16 15 9 11 14 11 9 16 12.25
Hamburg 12 10 11 7 12 8 10 6 12 10 11 10 6 12 9.92
Berlin 13 13 15 14 13 13 13 10 13 13 15 13 10 15 13.17
Leipzig 14 14 13 13 15 15 14 14 14 14 13 14 13 15 13.92
Ljubljana 15 15 9 10 14 14 8 8 15 15 9 15 8 15 12.25
Dublin 16 18 20 19 19 17 23 22 16 18 18 18 16 23 18.67
Rostock 17 16 16 16 16 18 15 16 17 16 16 16 15 18 16.25
Antwerp 18 17 17 18 17 16 18 18 18 17 17 17 16 18 17.33
London 19 19 18 20 18 20 19 21 19 19 20 19 18 21 19.25
Warsaw 20 20 22 21 20 19 20 20 20 20 21 20 19 22 20.25
Brussels 21 25 21 23 22 24 21 24 21 25 22 25 21 25 22.83
Bordeaux 22 21 19 17 21 21 17 17 22 21 19 21 17 22 19.83
Rotterdam 23 22 24 25 24 26 27 25 24 24 23 24 22 27 24.25
Malmö 24 24 29 27 27 23 31 27 23 22 26 22 22 31 25.42
Groningen 25 23 33 29 25 25 32 32 25 23 33 23 23 33 27.33
Aalborg 26 29 25 31 23 27 26 26 28 30 27 30 23 31 27.33
Lisbon 27 28 32 33 30 30 36 37 26 27 30 27 26 37 30.25
Madrid 28 27 30 32 31 31 33 36 27 28 31 28 27 36 30.17
Strasbourg 29 26 26 22 26 22 25 19 29 26 28 26 19 29 25.33
Tallinn 30 31 28 28 33 33 29 30 31 32 29 32 28 33 30.5
Verona 31 33 23 24 29 41 22 33 35 35 25 35 22 41 30.5
Marseille 32 30 27 26 28 28 24 23 30 29 24 29 23 32 27.5
Cardiff 33 32 34 30 37 32 34 29 32 31 34 31 29 37 32.42
Vilnius 34 38 31 34 34 35 28 31 33 38 32 38 28 38 33.83
Rennes 35 35 35 35 32 29 30 28 34 33 35 33 28 35 32.83
Bologna 36 34 39 37 36 38 38 38 36 34 39 34 34 39 36.58
Kraków 37 36 37 38 35 34 35 35 37 36 37 36 34 38 36.08
Budapest 38 37 36 36 39 36 37 34 38 37 36 37 34 39 36.75
Ostrava 39 39 40 40 38 37 40 39 40 40 41 40 37 41 39.42
Glasgow 40 40 41 39 43 42 47 42 39 39 40 39 39 47 40.92
Nicosia 41 46 38 47 40 52 39 51 41 48 38 48 38 52 44.08
Newcastle 42 41 44 41 45 40 49 41 42 41 44 41 40 49 42.58
Riga 43 43 42 44 41 39 41 40 43 43 42 43 39 44 42
Barcelona 44 44 53 53 44 46 54 53 44 42 51 42 42 54 47.5
Manchester 45 42 48 48 47 43 50 49 45 44 50 44 42 50 46.25
Rome 46 45 47 45 50 48 48 47 47 45 47 45 45 50 46.67
Sofia 47 49 50 50 46 45 46 48 46 46 46 46 45 50 47.08
Liège 48 47 43 43 48 47 43 43 48 47 45 47 43 48 45.75
Gdańsk 49 50 45 42 42 49 42 44 49 50 43 50 42 50 46.25
Belfast 50 48 46 46 54 50 52 50 50 49 49 49 46 54 49.42
Valletta 51 54 55 55 52 58 55 60 51 54 55 54 51 60 54.5
Lille 52 51 51 52 49 44 45 46 52 51 52 51 44 52 49.67
Athens 53 55 54 54 55 57 56 58 53 55 53 55 53 58 54.83
Oviedo 54 52 52 51 53 53 51 52 55 53 54 53 51 55 52.75
Zagreb 55 53 49 49 51 51 44 45 54 52 48 52 44 55 50.25
Turin 56 56 59 57 57 55 59 57 56 56 58 56 55 59 56.83
Białystok 57 57 57 58 58 54 58 55 57 57 57 57 54 58 56.83
Málaga 58 58 58 59 59 59 60 59 58 58 59 58 58 60 58.58
Košice 59 59 56 56 56 56 53 54 59 59 56 59 53 59 56.83
Bucharest 60 60 61 61 60 61 62 61 60 60 61 60 60 62 60.58
Miskolc 61 61 60 60 61 60 57 56 61 61 60 61 56 61 59.92
Cluj-Napoca 62 62 62 62 62 62 61 62 62 62 62 62 61 62 61.92
Naples 63 63 63 63 64 64 64 64 63 63 63 63 63 64 63.33
Burgas 64 64 64 64 63 63 63 63 64 64 64 64 63 64 63.67
Palermo 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65
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Table A20: Results of the UA and SA of the Subjective SCCI
Scenario

City 1 2 3 4 5 6 7 8 9 10 11 12 Min Max Ø

Aalborg 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Graz 2 2 6 5 2 2 6 5 2 2 6 5 2 6 3.75
Munich 3 4 3 4 3 4 4 4 3 4 3 4 3 4 3.58
Vienna 4 5 2 3 5 5 2 3 4 5 2 3 2 5 3.58
Luxembourg 5 6 5 6 4 6 5 6 5 6 5 6 4 6 5.42
Groningen 6 3 4 2 6 3 3 2 6 3 4 2 2 6 3.67
Cardiff 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Copenhagen 8 11 13 14 9 11 16 14 8 10 13 14 8 16 11.75
Belfast 9 10 8 10 8 9 8 10 10 11 9 10 8 11 9.33
Stockholm 10 13 9 13 10 15 10 13 9 12 8 13 8 15 11.25
Newcastle 11 8 10 8 11 8 9 8 12 8 11 8 8 12 9.33
Helsinki 12 18 11 17 13 18 12 18 11 17 10 16 10 18 14.42
Glasgow 13 9 15 9 12 10 13 11 13 9 14 9 9 15 11.42
Malmö 14 24 12 23 17 24 15 24 14 24 12 23 12 24 18.83
Rennes 15 15 16 12 14 12 14 12 16 15 16 11 11 16 14
Hamburg 16 14 17 16 16 16 17 16 15 14 17 15 14 17 15.75
Rostock 17 16 14 11 15 14 11 9 17 18 15 12 9 18 14.08
Leipzig 18 17 18 15 19 17 18 15 18 16 18 17 15 19 17.17
Manchester 19 21 20 21 18 21 19 21 19 22 20 21 18 22 20.17
Antwerp 20 12 24 20 20 13 25 20 20 13 24 20 12 25 19.25
Rotterdam 21 19 22 18 22 20 22 19 21 19 22 18 18 22 20.25
Bordeaux 22 20 23 19 21 19 21 17 22 20 23 19 17 23 20.5
Ljubljana 23 25 21 25 24 25 23 25 23 25 19 25 19 25 23.58
Cluj-Napoca 24 29 31 37 23 29 31 36 24 30 31 36 23 37 30.08
Amsterdam 25 22 27 22 27 22 27 22 25 21 26 22 21 27 24
London 26 26 28 26 25 26 28 27 26 26 28 26 25 28 26.5
Strasbourg 27 23 26 24 28 23 26 23 27 23 25 24 23 28 24.92
Białystok 28 35 19 28 29 35 20 28 28 35 21 28 19 35 27.83
Oviedo 29 27 25 27 26 27 24 26 29 27 27 27 24 29 26.75
Tallinn 30 33 30 32 31 32 30 31 30 33 29 33 29 33 31.17
Burgas 31 43 29 39 30 43 29 39 31 42 30 40 29 43 35.5
Vilnius 32 34 32 34 33 34 32 34 32 34 32 34 32 34 33.08
Gdańsk 33 37 33 38 32 36 33 38 33 39 33 38 32 39 35.25
Prague 34 28 35 29 34 28 35 29 34 28 35 29 28 35 31.5
Dublin 35 38 34 35 35 38 34 37 35 38 34 35 34 38 35.67
Ostrava 36 30 36 30 36 30 37 30 36 29 36 30 29 37 33
Berlin 37 31 38 31 40 33 38 32 37 31 38 31 31 40 34.75
Kraków 38 46 39 46 37 46 39 46 38 45 39 45 37 46 42
Zagreb 39 40 37 36 38 40 36 35 39 41 37 37 35 41 37.92
Valletta 40 42 52 50 39 39 50 48 41 43 53 50 39 53 45.58
Lille 41 32 40 33 41 31 40 33 40 32 40 32 31 41 36.25
Málaga 42 45 41 44 42 45 41 43 44 47 41 46 41 47 43.42
Paris 43 39 45 42 44 41 45 42 42 37 44 41 37 45 42.08
Riga 44 49 42 48 43 49 42 49 43 49 42 49 42 49 45.75
Warsaw 45 52 43 52 46 53 43 52 45 52 43 52 43 53 48.17
Verona 46 41 44 41 45 42 44 41 47 40 45 42 40 47 43.17
Brussels 47 36 46 40 47 37 46 40 46 36 46 39 36 47 42.17
Budapest 48 54 47 53 48 54 47 53 48 53 47 53 47 54 50.42
Barcelona 49 48 48 47 49 48 48 47 49 48 49 47 47 49 48.08
Košice 50 50 49 49 51 50 49 50 50 50 48 48 48 51 49.5
Liège 51 44 53 43 50 44 53 44 51 44 52 43 43 53 47.67
Bologna 52 47 50 45 52 47 52 45 52 46 50 44 44 52 48.5
Miskolc 53 56 51 56 53 57 51 56 53 56 51 55 51 57 54
Nicosia 54 53 55 55 54 52 55 55 54 54 55 56 52 56 54.33
Bratislava 55 59 56 59 55 59 56 59 55 58 56 59 55 59 57.17
Turin 56 55 54 51 56 55 54 51 56 55 54 51 51 56 54
Marseille 57 51 58 54 57 51 58 54 57 51 57 54 51 58 54.92
Madrid 58 57 57 57 58 56 57 57 59 57 58 57 56 59 57.33
Lisbon 59 58 59 58 59 58 59 58 58 59 59 58 58 59 58.5
Bucharest 60 61 61 61 60 61 61 61 60 61 61 61 60 61 60.75
Sofia 61 60 60 60 61 60 60 60 61 60 60 60 60 61 60.25
Rome 62 62 63 62 64 62 64 62 62 62 62 62 62 64 62.42
Naples 63 63 64 63 62 63 63 63 63 63 64 63 62 64 63.08
Athens 64 64 62 64 63 64 62 64 64 64 63 64 62 64 63.5
Palermo 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65
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Table A21: PCCs Between the UA and SA Scenarios of the Objective SCCI

1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 0.9978 1
3 0.9879 0.9864 1
4 0.9845 0.9883 0.9965 1
5 0.9959 0.9942 0.9905 0.9872 1
6 0.9871 0.9912 0.9785 0.9818 0.9888 1
7 0.9735 0.9728 0.9943 0.9911 0.9855 0.9714 1
8 0.9726 0.9781 0.9882 0.9927 0.982 0.9869 0.9911 1
9 0.9993 0.9978 0.9866 0.9841 0.9948 0.9889 0.9719 0.9735 1
10 0.9963 0.9993 0.9845 0.9875 0.9923 0.9925 0.9706 0.9786 0.9977 1
11 0.9887 0.9875 0.9992 0.9961 0.9905 0.9801 0.9925 0.988 0.9888 0.9869 1
12 0.9848 0.9889 0.9953 0.9992 0.9867 0.9829 0.9889 0.9922 0.9857 0.9893 0.9964 1

Table A22: PCCs Between the UA and SA Scenarios of the Subjective SCCI

1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 0.9775 1
3 0.9939 0.9707 1
4 0.9786 0.9955 0.9819 1
5 0.9997 0.9764 0.9931 0.9772 1
6 0.978 0.9997 0.9707 0.9949 0.9775 1
7 0.9939 0.9703 0.9998 0.9813 0.9937 0.9708 1
8 0.9792 0.9955 0.9823 0.9998 0.9784 0.9953 0.9821 1
9 0.9999 0.9788 0.9938 0.9797 0.9992 0.979 0.9935 0.9801 1
10 0.9766 0.9999 0.9699 0.9954 0.9752 0.9993 0.9692 0.9952 0.9781 1
11 0.9938 0.9717 0.9999 0.9827 0.9928 0.9715 0.9995 0.9829 0.9939 0.9711 1
12 0.9779 0.9954 0.9812 0.9999 0.9763 0.9946 0.9805 0.9995 0.9792 0.9955 0.9823 1
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Table A23: City Population Size Classification

XXL XL L M

City Inhabitants City Inhabitants City Inhabitants City Inhabitants

Paris 9,782,671 Naples 978,399 Gdańsk 461,489 Nicosia 241,000
London 8,730,803 Lille 902,970 Bratislava 419,678 Košice 239,464
Berlin 3,469,849 Turin 896,773 Tallinn 413,782 Oviedo 221,870
Madrid 3,141,991 Marseille 893,431 Strasbourg 401,308 Rennes 215,366
Rome 2,872,021 Amsterdam 810,938 Bologna 386,181 Valletta 212,885
Athens 2,641,511 Zagreb 799,999 Liège 382,852 Rostock 204,167
Bucharest 2,107,399 Kraków 761,873 Cardiff 355,727 Aalborg 203,448
Vienna 1,766,746 Palermo 678,492 Belfast 339,243 Burgas 198,725
Hamburg 1,762,791 Riga 641,007 Cluj-Napoca 321,916 Groningen 198,317
Budapest 1,757,618 Bordeaux 635,780 Malmö 302,835 Miskolc 159,554
Warsaw 1,735,442 Helsinki 620,715 Białystok 295,459 Luxembourg 111,287
Barcelona 1,604,555 Rotterdam 618,357 Ostrava 292,681
Stockholm 1,579,896 Glasgow 602,990 Newcastle 291,359
Munich 1,429,584 Málaga 569,130 Ljubljana 287,218
Prague 1,267,449 Copenhagen 559,440 Graz 269,997
Sofia 1,228,282 Leipzig 544,479 Verona 260,125
Brussels 1,196,831 Vilnius 542,626

Vilnius 542,626
Manchester 525,254
Dublin 516,255
Antwerp 515,593
Lisbon 509,312

Table A24: Summary Statistics of the Continuous Independent Variables

Independent Variable Unit Mean Std. Dev. Min Max
Population # inhabitants 1,075,187 1,652,190 111,287 9,782,671
GDP per Capita in PPS PPS/inhabitant 33,000 11,837.44 11,000 75,000
Population Density # inhabitants/km 2736.82 1929.10 161.57 8947.69
Cooling Degree Days Weather-based technical index 128 164.52 0 685.57
Heating Degree Days Weather-based technical index 2,546.66 776.86 541.82 4051.73
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Table A25: Breusch–Pagan / Cook–Weisberg Test of Heteroscedasticity

Dependent Variable
Objective SCCI Subjective SCCI

H0 Constant Variance Constant Variance
χ2(1) 0.04 11.81
Prob > χ2 0.8320 0.0006

Table A26: Shapiro–Wilk Test Statistics of Normality in Residuals

Dependent Variable Obs. W V z Prob > z

Objective SCCI 65 0.98898 0.639 -0.97 0.83403
Subjective SCCI 65 0.96519 2.018 1.52 0.06421

Table A27: VIFs of the Independent Variables

Independent Variable VIF

Cooling Degree Days 3.52
Heating Degree Days 3.32
Dummy Capital 1.92
Population 1.87
Population Density 1.80
GDP per Capita 1.72
Dummy New Member State 1.70
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Figure A1: Residuals vs. Fitted Values of the Subjective SCCI

Table A28: Shapiro–Wilk Test Statistics of the Regression Variables

Variable Obs. W V z Prob > z

Objective SCCI 65 0.97295 1.568 0.974 0.16508
Subjective SCCI 65 0.95274 2.74 2.182 0.01454
Population 65 0.5107 28.364 7.244 0.00000
GDP per Capita 65 0.95056 2.866 2.28 0.01130
Population Density 65 0.82316 10.251 5.04 0.00000
Cooling Degree Days 65 0.77206 13.213 5.589 0.00000
Heating Degree Days 65 0.94781 3.025 2.397 0.00826
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Table A29: PCCs Between Climatic Variables and Educational Indicators

Cooling Degree Days Heating Degree Days
Cooling Degree Days 1
Heating Degree Days -0.7639 1
B5O -0.5317 0.7007
B6O -0.4195 0.4364
B7O -0.1532 0.1592
C5O -0.3211 0.331
C6O -0.1594 0.1632
B2S -0.5071 0.3953
B3S -0.6355 0.6999
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